17 research outputs found

    Electromagnetically induced transparency of ultralong-range Rydberg molecules

    Get PDF
    We study the impact of Rydberg molecule formation on the storage and retrieval of Rydberg polaritons in an ultracold atomic medium. We observe coherent revivals appearing in the retrieval efficiency of stored photons that originate from simultaneous excitation of Rydberg atoms and Rydberg molecules in the system with subsequent interference between the possible storage paths. We show that over a large range of principal quantum numbers the observed results can be described by a two-state model including only the atomic Rydberg state and the Rydberg dimer molecule state. At higher principal quantum numbers the influence of polyatomic molecules becomes relevant and the dynamics of the system undergoes a transition from coherent evolution of a few-state system to an effective dephasing into a continuum of molecular states.Comment: Submitted to PR

    Free-Space Quantum Electrodynamics with a single Rydberg superatom

    Get PDF
    The interaction of a single photon with an individual two-level system is the textbook example of quantum electrodynamics. Achieving strong coupling in this system so far required confinement of the light field inside resonators or waveguides. Here, we demonstrate strong coherent coupling between a single Rydberg superatom, consisting of thousands of atoms behaving as a single two-level system due to the Rydberg blockade, and a propagating light pulse containing only a few photons. The strong light-matter coupling in combination with the direct access to the outgoing field allows us to observe for the first time the effect of the interactions on the driving field at the single photon level. We find that all our results are in quantitative agreement with the predictions of the theory of a single two-level system strongly coupled to a single quantized propagating light mode. The demonstrated coupling strength opens the way towards interfacing photonic and atomic qubits and preparation of propagating non-classical states of light, two crucial building blocks in future quantum networks

    Photon Subtraction by Many-Body Decoherence

    Get PDF
    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability

    Observation of three-body correlations for photons coupled to a Rydberg superatom

    Full text link
    We report on the experimental observation of non-trivial three-photon correlations imprinted onto initially uncorrelated photons through interaction with a single Rydberg superatom. Exploiting the Rydberg blockade mechanism, we turn a cold atomic cloud into a single effective emitter with collectively enhanced coupling to a focused photonic mode which gives rise to clear signatures in the connected part of the three-body correlation function of the out-going photons. We show that our results are in good agreement with a quantitative model for a single, strongly coupled Rydberg superatom. Furthermore, we present an idealized but exactly solvable model of a single two-level system coupled to a photonic mode, which allows for an interpretation of our experimental observations in terms of bound states and scattering states
    corecore