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Abstract
Mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensem-
bles onto single photons enables the realization of optical nonlinearities which can modify
light on the level of individual photons. This novel approach forms the basis of a growing
Rydberg quantum optics toolbox, which already contains photonic logic building-blocks
such as single-photon sources, switches, transistors, and conditional π-phase shifts.
This thesis reports on two experiments investigating strong photon-photon interactions
mediated by Rydberg interactions. First, applying a ladder-type EIT scheme to Rydberg
atoms in D-states with high principal quantum number results in the Rydberg interac-
tion mediated nonlinearity accompanied by a time-dependent decay of transmission of
probe light through the medium. In a joint experimental and theoretical analysis, this
effect is attributed to the dephasing of propagating polaritons into stationary Rydberg
excitations caused by the state mixing interaction occurring with RydbergD-state atoms.
Second, via a two-photon Raman excitation scheme Rydberg atoms are efficiently excited
in a small atomic cloud. As the size of the Rydberg blockade exceeds the dimension of
the medium, only a single Rydberg excitation can be present at a time. By fast engi-
neered dephasing this Rydberg excitation is decoupled from the light field. Measurement
of the transmitted light and the amount of excited Rydberg atoms gives evidence for the
realization of a deterministic single-photon absorber.
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1 Zusammenfassung in deutscher
Sprache

Einführung in das Themengebiet dieser Arbeit
Die Herstellung von kleinsten atomaren Strukturen ist in unserer heutigen Zeit dank des
technologischen Fortschritts eine gängige Methode, welche u.a. die Integration von Com-
putern in den Alltag ermöglichte. Sowohl die Bandbreite als auch der Abtransport von
Wärme in den verwendeten Halbleitermaterialen moderner Prozessoren wird den rapi-
den Fortschritt in Zukunft allerdings verlangsamen oder gar stoppen. Aufgrund seiner
Eigenschaft fast verlustfrei und mit hoher Geschwindigkeit große Strecken zurücklegen
zu können, ist der Einsatz von Licht als Ersatz elektronischer Bauteile in zukünftigen-
Computergenerationen erstrebenswert [1].

Neben den möglichen Anwendungen in klassischen Computern sind Photonen, nicht
zuletzt seit der ersten Demonstration verschränkter Photonenpaaren [2, 3] ein hervor-
ragender Kandidat für den Einsatz in Quantencomputern [4] und -simulatoren [5]. Die
Grundbausteine solcher Anwendungen, wie z.B. optische Gatter oder Transistoren, basieren
dabei auf starken Wechselwirkungen zwischen einzelnen Photonen. Da Photonen im
Vakuum allerdings nicht miteinander wechselwirken, müssen optisch nichtlineare Materi-
alen gefunden werden um die benötigten Wechselwirkungen zwischen einzelnen Photonen
zu vermitteln. In herkömmlichen optischen Materialen sind Wechselwirkungen zwischen
einzelnen Photonen vernachlässigbar klein. Demzufolge treten nichtlineare Effekte, wie
etwa die Frequenzverdopplung [6] oder auch die Summenfrequenzbildung [7] erst bei sehr
hohen Lichtintensitäten auf.
Das einfachste System, welches man sich als Forscher zur Realisierung von Nichtlinear-
itäten zwischen einzelnen Photonen vorstellen kann, besteht aus einem einzelnen Atom
welches an ein Lichtfeld gekoppelt wird [8]. Zum Erreichen starker Wechselwirkungen
zwischen den einzelnen Photonen des Lichtfelds ist die Sättigung des atomaren Übergangs
mit einem einzelnen Photon erforderlich. Allerdings verlangt der winzige Streuquerschnitt
der Atom-Licht-Wechselwirkung, dass der einfallende Lichtpuls an die dipolförmige Ab-
strahlcharakteristik des Atoms angepasst wird. Trotz des enormen Fortschritts in der
Ingenieurskunst zur Fertigung von Präzisionsoptiken, konnten bisher nur schwache Kop-
plungseffizienzen erreicht werden [9].
Einen alternativen Ansatz bietet die Nutzung atomarer Ensembles in welchen Lichtpulse
unter der Verwendung von langsamem Licht [10], welches mit Hilfe vom elektromag-
netisch induzierter Transparenz (EIT) erzeugt wird [11, 12]. Obwohl die Stärke der so
erzielbaren Wechselwirkungen im Prinzip limitiert ist [13], konnte mit dieser Methode
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2 zusammenfassung in deutscher sprache

erst vor kurzem ein Phasenschub gemessen werden, welcher einen Wert von π übertrifft.
Dazu wurde nur eine geringe Menge Licht, bestehend aus acht Photonen benötigt [14].
Eine extreme Verstärkung optischer Nichtlinearitäten wurde mittels einzelner, in der
Grundmode optischer Resonatoren hoher Güte gefangener Atome realisiert [15]. Dabei
wird die Atom-Licht-Wechselwirkung durch die vielen Umläufe, welche ein einzelnen
Photon im Resonator untergehen kann bevor es emittiert wird, extrem verstärkt. Neben
vielen weiteren beeindruckenden Resultaten im Bereich der Quantenelektrodynamik mit
Resonatoren sind insbesondere die Verschränkung von Photonenpaaren [16], die Real-
isierung eines Einzel-Photonen-Transistors welcher durch ein einzelnes Photon geschalten
wird [17], und der von einem einzelnen Photon hervorgerufene optische Phasenschub [18]
erwähnenswert. Allerdings sind die hohen technischen Anforderungen nur schwer mit der
erforderliche Skalierbarkeit zu vereinbaren. Darüberhinaus limitiert die benötigte hohe
Güte der Resonatoren die maximal erzielbare Bandbreite.
In einem komplementären Ansatz werden die starken Dipol-Dipol-Wechselwirkungen
zwischen Paaren von Rydbergatomen in kalten atomaren Gasen ausgenutzt, um diese
auf Photonen zu übertragen. Generell wurden Rydbergatome, also Atome die wenig-
stens ein Elektron besitzen welches in einen Zustand hoher Hauptquantenzahl angeregt
wurde (typischerweise n > 10), im Bereich der Atomphysik im Laufe der letzten Jahre
ein beliebter Forschungsgegenstand. Das Feld entwickelt sich rapide in verschiedenste
Richtungen, welche sich von kalten, atomaren Kollisionen zwischen einzelnen Rydbgerg-
Elektronen und ultra-kalter Materie [19, 20], über Einzel-Quanten-Bit Gatter [21, 22],
bis hin zur Realisierung von quantalen Vielteilchensystem erstrecken [23, 24]. In den für
dieses Schriftstück relevanten Arbeiten wird die Rydberg basierte Anregungsblockade
[25] als Grundlage verwendet. Bei resonanter Anregung mit Laserlicht darf im soge-
nannten Bereich der Rydbergblockade nur ein einzelnes Atom in den Rydbergzustand
angeregt werden, die Energieniveaus von benachbarten Atomen werden aufgrund der
Rydberg-Rydberg Wechselwirkung aus der Anregungsbandbreite des Lasers geschoben.
Dies erlaubt die Beobachtung kollektiver Vielteilchendynamik und die Verschränkung
großer Atomzahlen. Obwohl sich die Rydberg-Wechselwirkung zum ersten Mal als Ver-
breiterungsmechanismus in der Spektroskopie von Zäsiumdampf bemerkbar machte [26],
revolutionierten sowohl die Verfügbarkeit der Laserkühlung neutraler Atome [27, 28] als
auch präzise Spektroskopiemethoden das Feld der Rybergphysik. Bei Temperaturen im
Bereich weniger Mikrokelvin dominieren die Wechselwirkungsenergien auf der Größenord-
nung von einigen Gigahertz, diese Errungenschaft ermöglichte beispielsweise die Beobach-
tung kohärenter Zeitentwicklung verschränkter Atompaare [29, 30], die Durchstimm-
barkeit der Wechselwirkungsstärke vom Bereich der van-der-Waals Wechselwirkung [31]
hin zu resonanter Dipol-Dipol Wechselwirkung [32, 33], oder Bildung geordneter Struk-
turen [34]. Insbesondere die mittlerweile verfügbaren Techniken zur kohärenten Kontrolle
machen Rydbergatome zu einem vielversprechenden Kandidaten für die Realisierung von
Modellsystemen mit gut kontrollierbarer Größe und Form zum Einsatz als universeller
Quantensimulator [35].
Die Nutzung der enormen Wechselwirkung zwischen Rydbergatomen zur Erzeugung
starker Nichtlinearitäten zwischen einzelnen Photonen, wurde erstmals im Jahr 2005
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von Friedler et al. vorgeschlagen [36]. Dem Vorschlag liegt die Kopplung eines Ryd-
bergzustands in einem EIT-Schema zugrunde. Dadurch werden Photonen in einem op-
tisch dichten Medium in sich langsam bewegende Polaritonen umgewandelt, also in Qu-
asiteilchen welche sowohl photonische als auch atomare Eigenschaften besitzen [12]. We-
gen der Rydberg-Wechselwirkung können sich zwei Polaritonen nicht gemeinsam durch
das Medium bewegen wenn ihr Abstand kleiner als die Größe der Rydbergblockade ist.
Dies hat stark nichtlineare Transmissionseigenschaften und die Änderung der Photonen-
statistik des transmittierten Lichtfeldes zur Folge. Die erste experimentelle Umsetzung
dieses Vorschlags gelang im Jahr 2010 der Gruppe von Charles Adams [37]. Experi-
mentelle Verbesserungen ermöglichten im Folgenden die Beobachtung von nichtklassis-
chem Licht, welches durch die Wechselwirkung einzelner Photonen verursacht wird [38,
39, 40]. Weitere Meilensteine waren die Realisierung eines gebundenen Zustands beste-
hend aus zwei Photonen [41] und die Messung eines Phasenschubs von π, ausgelöst
von einem einzelnen Photon [42]. Basierend auf diesen beeindruckenden Ergebnissen
wurde ein tiefgreifendes theoretisches Verständnis entwickelt [43]. Darauf aufbauende
Arbeiten sagen beispielsweise neuartige, auf der Wechselwirkung zwischen drei Photo-
nen beruhende Eigenschaften [44, 45] oder die kristallartige Anordnung von Photonen
[46] voraus. Ein Übergang von eindimensionalen zu zwei- oder dreidimensionalen Ge-
ometrien wird in zukünftigen Experimenten den Übergang zu aus Photonen bestehenden
Vielteilchensystemen ermöglichen.

Ergebnisse dieser Arbeit
Im Rahmen dieser Arbeit wurde, beginnend im Juli 2012, ein Experiment zur Unter-
suchung starker optischer Nichtlinearitäten aufgebaut. Der Aufbau der Experimentap-
paratur beruht auf den gängigen Kühlmethoden für neutrale Atome und ermöglicht die
Erzeugung atomarer Ensembles mit Temperaturen im Bereich weniger Mikrokelvin. Die
Verwendung optischer Dipolfallen stellt eine hohe Flexibilität bei der Kontrolle von Form
und Größe des atomaren Mediums zur Verfügung. Durch die Kopplung von Rydberg-
Wechselwirkungen an das Lichtfelds mittels EIT, ermöglichte diese Apparatur die ex-
perimentelle Umsetzung eines Einzelphotonen-Transistors, welcher mittels eines einzigen
Schaltphotons die Transmission von über hundert Zielphotonen an- oder ausschalten
kann [47, 48].

Auf der daraus gewonnenen Erkenntnis, starke Wechselwirkungen zwischen einzelnen
Photonen erzielen zu können aufbauend, werden in dieser Arbeit zwei weiterführende
Experimente beschrieben. Die experimentellen Ergebnisse und deren Interpretation sind
dabei sowohl in theoretische Ausarbeitungen der Rydberg-Rydberg Wechselwirkung und
der Atom-Licht Wechselwirkung, als auch eine kurze Beschreibung des experimentellen
Aufbaus eingebettet.

Im Einzelnen, wurde während dieser Arbeit zunächst die Transmission von Photonen
durch die Atomwolke untersucht, wobei das Lichtfeld mittels EIT an einen Rydberg D-
Zustand (L=2) gekoppelt wurde. Dieses Experiment ermöglichte es, neue Erkenntnisse
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über die Propagationseigenschaften von Polaritonen unter Beachtung anisotroper Wech-
selwirkungen zu gewinnen [49]. Zeitabhängige Messungen der Transmission durch die
Atomwolke zeigten sowohl die bereits bekannte optische Nichtlinearität [41, 37], verur-
sacht durch die starken Rydberg-Rydberg Wechselwirkungen, als auch eine zeitabhängige
Abnahme der Transmission. In verschiedenen Messreihen wurde die Skalierung dieses
neuen Effekts mit der Photonenrate, der Rabifrequenz des Kontrolllasers und der Haup-
tquantenzahl untersucht. Besonders der Befund, dass die Abnahme der Transmission
mit der Wahrscheinlichkeit gleichzeitig zwei Polaritonen im Medium zu finden skaliert,
motivierte dabei folgende Erklärung: Die durch die anisotrope Rydberg-Wechselwirkung
verursachte Mischung entarteter Zeeman-Zustände verursacht die Besetzung von vom
Lichtfeld abgekoppelten Spin-Zuständen, welche als stationäre Rydberganregungen in der
Atomwolke zurückbleiben und diese blockieren. Zur weiteren theoretischen Beschreibung
wurden deshalb winkel- und abstandsabhängige Wechselwirkungspotentiale ausgerech-
net. Diese Potential ermöglichten die Berechnung von Dephasierungsraten aus dem vom
Lichtfeld gekoppelten Zustand in ungekoppelte Zustände. Vergleiche mit dem anisotropen
Rydbergblockaderadius zeigten, dass diese Dephasierungsraten für Rydberg D-Zustände
im Vergleich zu S -Zuständen außerhalb der Blockade nicht vernachlässigt werden dürfen.
Der zusätzliche Einbau der berechneten Dephasierungsraten in numerische Simulationen
für die Propagation von Polaritonen durch ein dreidimensionales Medium ergab qualita-
tive Übereinstimmung mit dem Experiment.

Durch die extreme Verkleinerung der Atomwolke mit Hilfe eines zusätzlichen Fallen-
lasers war es möglich, in einen Parameterbereich einzutreten in welchem aufgrund der
Rydbergwechselwirkung nur ein einzelnes Atom in den Rydbergzustand angeregt wer-
den kann [50]. In diesem Fall muss die Ununterscheidbarkeit der Atome berücksichtigt
werden, da sich prinzipiell jedes Atom im Rydbergzustand befinden kann. Dieser Tat-
sache kann Rechnung getragen werden, indem neue, kollektive Zustände betrachtet wer-
den. Die entsprechende Basistransformation liefert neben dem Grundzustand |G〉 einen
vom Lichtfeld gegkoppelten Zustand |W〉 und N − 1 ungekoppelte Zustände |Dj〉. Die
gesamte kohärente Entwicklung des Vielteilchensystems kann also durch zwei Zustände
beschrieben werden, weswegen ein solches System häufig als „Superatom“ beschrieben
wird. Im Experiment wurde die durch die Absorption des ersten Photons entstandene
Rydberganregung vom Lichtfeld abgekoppelt um Rabioszillationen des Superatoms zu
verhindern. Um dies zu erreichen wurde der lichtgekoppelte Zustand |W〉 an die ungekop-
pelten Zustände |Dj〉 gekoppelt [51]. Als Mechanismus dienten dabei die Dephasierung
des Superatoms aufgrund der thermischen Bewegung der Atome, die inhomogene Linien-
verbreiterung durch die optische Falle und die Linienverbreiterung durch die Bildung von
Rydbergmolekülen. Messungen der Zahl der durch die Atomwolke transmittierten Pho-
tonen und der Vergleich mit der Anzahl der in die Wolke gesendeten Photonen zeigten,
dass auf diese Weise ein effizienter Absorber für einzelne Photonen realisiert werden kann.
Diese Behauptung wurde durch gemessene Statistik der angeregten Rydbergatome ein-
drucksvoll bestätigt.



2 Introduction
The manufacturing of tiniest structures of matter atom by atom is nowadays an estab-
lished technology which made the integration of computers in everydays life possible.
However, both the bandwidth and the heat transport of the semiconductor components
in modern processors will soon impose a limit on future progress. Based on their ability
to almost frictionless travel with high speed over long distances, photons are an ideal
candidate to replace electronic parts in future computers [1].

Besides the applications in classical computation, photons are not only since the first
demonstration of entangled photon pairs [2, 3] an ideal candidate for quantum computa-
tion [4] and simulation [5]. The building blocks of such implementations, like all-optical
gates and transistors, necessitate strong interactions between individual photons. As pho-
tons are per se non-interacting this demand triggered the search for strongly nonlinear
media mediating effective interactions between individual photons. In conventional opti-
cal materials, photon interactions are negligible and nonlinear effects, such as frequency
doubling [6] or sum-frequency generation [7], do only occur at very high intensities.
The most basic system to think of in this research direction consists of a single atom
being coupled to a weak light field [8]. Achieving strong effective interactions between the
individual photons of the probe field demands saturation of the atomic absorption with
a single photon. The tiny atom-photon scattering cross section demands to match the
shape of the light field to the dipolar emission pattern of the single atom. Even having in
mind the vast progress in engineering of precision optics, up to now only weak coupling
efficiencies have been reached [9].
Alternatively, optical nonlinearities have been investigated in ensembles of atoms where
light pulses are compressed inside the medium by means of slow light [10] offered by elec-
tromagnetically induced transparency (EIT) [11, 12]. Although the interaction strength
is in principle limited [13], recently a cross-phase modulated phase shift exceeding π

induced by a weak field containing eight photons has been realized [14].
Great enhancement of optical nonlinearities has been realized with single atoms placed
in the node of high-finesse cavities [15]. In such systems, the light-matter interaction is
greatly enhanced by the many round-trips a single photon can make inside the cavity
before it gets lost. Among other achievements demonstrating nonlinearities on the single
photon level, the outstanding results of cavity QED utilizing single atoms are the entan-
glement of a photon-pair [16], demonstration of a single photon transistor gated by one
photon [17], and a deterministic phase shift induced by a single photon [18]. The high
technical demands on the design and stability adversely affect the required scalability of
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6 introduction

cavity systems. On top, the high finesse demanded to enter the strong coupling regime
sets an upper limit to the achievable bandwidth.
A complementary approach utilizes the strong dipole-dipole interactions between pairs of
Rydberg atoms in cold atomic gases by mapping these onto photons. In general, Rydberg
atoms, with at least on of their electrons excited to a state with large principal quantum
number (typically n > 10), have become a central research topic in the framework of
atomic physics. Over the last decade this field has evolved into diverse directions, rang-
ing from studies of cold atomic collisions of single electrons with ultra-cold matter [19,
20], over single-qubit quantum gates [21, 22] to the realization of quantum many-body
systems [23, 24]. In this thesis, the Rydberg excitation blockade [25] serves as underlying
mechanism, exploited in the framework of various theoretical and experimental work.
When resonantly driven by a laser field, inside a so-called Rydberg blockade region only
a single excitation to a Rydberg state can occur, energy levels of atoms surrounding a
present excitation are shifted out of resonance by the strong Rydberg-Rydberg interac-
tions. This effect gives rise to coherent many-body dynamics in mesoscopic ensembles
and entanglement of large atom numbers. Although interaction induced broadening of
excitation lines was for the first time observed in a hot cesium vapour [26], the availability
of cooling techniques for neutral atoms [27, 28] and precision spectroscopy revolutionized
the Rydberg field. At temperatures in the micro-Kelvin regime the interaction energies
on the order of GHz become the dominating terms, allowing the observation of e.g. co-
herent evolution entangled atom pairs [29, 30] and ensembles [52, 53], tunability of the
interaction strength from van-der-Waals type 1/R6 interaction [31] to resonant dipole-
dipole 1/R3 interaction [32, 33], or the formation of ordered structures [34]. Especially
the meanwhile available coherent control techniques make ensembles of Rydberg atoms
a promising candidates to realize model systems with well controllable geometries and
parameters for quantum simulation purposes [35].

Employing the strong interactions among Rydberg atoms to mediate strong nonlinear-
ities between individual photons dates back to the first proposal of Friedler et al. in
2005 [36]. The proposal is based on addressing a Rydberg state in an EIT scheme, trans-
forming photons inside an optically dense medium into slowly propagating dark state
polaritons [12], quasi-particles with both photonic and atomic character. As a conse-
quence of the Rydberg interaction, two polaritons cannot travel through the medium
at distances smaller than the Rydberg blockade, resulting in nonlinear transmission and
change of the photon statistics at the output of the medium. The group of Charles Adams
reported the experimental realization of such optical nonlinearities for the first time in
2010 [37]. Subsequent experimental advances facilitated the generation of non-classical
light due to interactions on the level of single photons, changing the quantum statistics
of the transmitted light [38, 39, 40]. A further milestone in the field was the observa-
tion of a photonic bound state by Firstenberg et al. [41] and a phase shift of π induced
by a single photon [42]. Triggered by the groundbreaking experimental results, a thor-
ough theoretical understanding was developed [43]. Further work predicts for example
three-photon interactions showing novel features [44, 45] or crystalline arrangement of
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photons [46]. Transition from one-dimensional to two- or three-dimensional geometries in
future experiments will enable transitions from few- to many-body systems of interacting
photons.
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This thesis

In the framework of this thesis, starting in July 2012 an apparatus has been build with
the goal of realizing such strong optical nonlinearities mediated by Rydberg interactions.
Simultaneously with the group of Gerhard Rempe at the Max Planck Institute of Quan-
tum Optics in Munich, this apparatus enabled the realization of an all-optical transistor
switching up to 100 signal photons with a single incident gate photon [47, 54, 48].
Based on this outstanding demonstration of huge optical nonlinearities on the level of
single photons, this thesis treats two nonlinear experiments coming from slightly differ-
ent directions. The first experimental result utilizes the approach introduced before by
applying a resonant EIT scheme to convert photons into polaritons [12] slowly propa-
gating through a elongated atomic medium. During the propagation time of hundreds of
nanoseconds two polaritons can interact inside the medium resulting in strong effective
photon-photon interactions. In contrast to earlier work the experiments are performed
with Rydberg D-states showing a rich angular dependence in their interaction which
imposes additional nonlinear effects. These experiments are highly interesting in view of
many other proposals and experiments investigating the angular dependence of Rydberg
interactions [55, 56, 57, 58].
The second experimental achievement of this thesis is realized by a rather complemen-
tary approach. Instead of an EIT scheme, the Rydberg state is addressed in a two-photon
Raman scheme, i.e. the photons are travelling with the speed of light. In combination
with an extremely short medium allowing only the excitation of a single Rydberg atom
at a time this opens another branch of Rydberg mediated nonlinear quantum optics.
The single excitation shared among a large number of ground state atoms results in a
coherent superposition state, a so-called superatom [59, 51], resulting in an enhancement
of the driving Rabi frequency with the square root of the atom number [30, 29, 52, 53].
In contrast to a single atom coupled to a light field, such a superatom can still carry
only a single excitation, but the light matter interaction is enhanced due to the large
number of ground state atoms. By decoupling the light field from the superatom after the
excitation of a first photon, the demonstration of a deterministic single-photon absorber
was realized in the scope of this thesis.

This thesis is structured as follows:

In chapter 3, an overview of the exaggerated properties of Rydberg atoms stemming
from the low binding energy of the Rydberg electron is given. The chapter summarizes
the tools required to describe the interaction of a pair of Rydberg atoms in the pres-
ence of electric fields and arbitrary arrangement of the Rydberg atoms in space. The
last section motivates the need for the full calculation of Rydberg-Rydberg interaction
by comparison of calculated potentials with current experiments. Chapter 4 introduces
the transmission properties of an atomic three-level system coupled by two driving laser
fields. Based on the solution of the Master equation the transmission properties of a weak
probe light through an atomic ensemble is derived for different parameters like intensity
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or detuning of the driving lasers or intrinsic atomic properties causing decoherence. At
the end of the second chapter understanding of Rydberg interactions is combined with
the derived transmission properties to draw conclusions which requirements have to be
experimentally fulfilled to observe nonlinear effects on the level of single photons.
Chapter 5 introduces the apparatus which has been built during the thesis. The primary
focus in this chapter is put on the implementation of an atomic medium with tunable
size and high density. Additionally, the measurement techniques and concepts used in
the experiment are presented.
Subsequently, chapter 6 reports about the nonlinear effects investigated by applying the
Rydberg-EIT scheme to Rydberg atoms in a D-state (L = 2). In contrast to previous
experiments working with S-states, the transmission of weak light pulses through the
medium on EIT resonance shows a time dependence which scales quadratically with the
input photon number. Based on experimentally determined scaling laws with light inten-
sities and principal quantum number, a model is developed explaining the observed effect
by dephasing of polaritons into stationary Rydberg excitations decoupled from the light
field. This dephasing is caused by the angular dependence of the Rydberg interaction of
D-states, resulting in a coupling of different magnetic spin states. Full numerical simula-
tion of the two-photon wave function reveals qualitative agreement with the experiment.
Chapter 7 reports the realization of a deterministic single-photon absorber based on
strong coupling of a light field to a Rydberg superatom. Fast engineered dephasing de-
couples the Rydberg atom from the light field ones a first photon is absorbed, rendering
the medium transparent for subsequent photons. A detailed discussion explicates this
process, measurements of both transmitted photons and excited Rydberg atoms for in-
put photon numbers up to N in = 35 demonstrate strong evidence for the realization of
such an saturable absorber.
Finally, the work within this thesis is summarized and a short outlook presents future
perspectives of the research direction.





Part I

THEORETICAL FOUNDATIONS

I... a universe of atoms, an atom in the universe.
Richard Feynman





3 Rydberg atoms and their interaction
The expression Rydberg atom refers to atoms which have at least one of their electrons
excited to large principal quantum number n, with typically n > 10. In such states, the
Rydberg electron has only very small overlap with the core (nucleus and inner electron
shells) of the atom, resulting in numerous of extreme properties. Due to the low binding
energy, Rydberg atoms are extremely sensitive to external perturbations by both electric
and magnetic fields. But even the presence of other Rydberg atoms nearby can influence
the energy levels.

The first section of this chapter summarizes the most important properties of Ryd-
berg atoms which are relevant for the experiments within this thesis. It follows a detailed
discussion of the calculation of angular dependent Rydberg-Rydberg interaction poten-
tials, parts of this discussion were published within the scope of this thesis in [60]. The
results of this section play an important role for the experiments presented later on in
chapters 6 and 7. The third section compares example calculations of the full Rydberg-
Rydberg interaction with current experiments. A open-source software programmed by
Sebastian Weber which is based on the formalisms summarized here and in [60], allows
fast computation of numerous Rydberg potentials1

3.1 basic properties of rydberg atoms

Although the internal structure of Alkali atoms is due to the larger nucleus number much
more complicated, Alkali Rydberg atoms with one electron far out from the core share
some basic properties with the well understood Hydrogen atom. Reason is the shielding
of the nucleus by the inner electrons forming closed shells. As a consequence, the outer
Rydberg electron "feels" an almost pure Coulomb potential. It was at first Johannes Ry-
dberg who found that the spectra observed with Alkali atoms obey a similar law like the
ones of Hydrogen.

In many textbooks the potential energy EnLJ of an electron excited to a Rydberg state
is nowadays described by

EnLJ = −hcR
∗

(n∗)2 = − hcR∗

(n− δnLJ )2 . (3.1)

1https://github.com/pairinteraction/pairinteraction

13



14 rydberg atoms and their interaction

Property n scaling 5S1/2 100S1/2
binding energy (n∗)−2 4.18 eV 1.435 meV
orbit radius (n∗)2 5.632 a0 13810 a0

level spacing (n∗)−3 5S ↔ 6S: 2.5 eV 99S ↔ 100S: 29.05 µeV
trans. dipole moment (n∗)−3/2 5S ↔ 5P : 4.227 ea0 5P ↔ 100S: 0.0047 ea0

polarizability (n∗)7 −79.4 mHz/(V/cm)2 −6.197 GHz/(V/cm)2

Table 3.1: Properties of Rydberg atoms This table gives an overview over the extreme prop-
erties of Rydberg atoms and how their scaling with the effective principal quantum
number n∗. Exemplary values calculated for an Rydberg atom excited to 100S1/2
indicate the extreme properties Rydberg atoms can reach. The corresponding values
of 87Rb ground state atoms for comparison are taken from [64].

Here, R∗ is the modified Rydberg constant and n∗ the effective quantum number. Latter
one can be expressed as n∗ = n− δnLJ including the quantum defect δnLJ [61]. These
parameters incorporate species dependent modifications to the bare Coulomb potential
occurring in multi-electron atoms with filled inner shells. A detailed analysis of these
parameters is given in B.1.
The decrease of the binding energy with (n∗)2 revealed by eq. (3.1) gives reason to the

extreme properties of Rydberg atoms. First, as a direct consequence, the extend of the
electron wave function has only small overlap with the nucleus. Excited to high principal
quantum numbers, Rydberg atoms can thus form macroscopic objects [62]. Second, the
weak binding energy results in a high sensibility to perturbations, for example to weakest
electric fields. This makes Rydberg atoms a promising candidate for electric field sensing
[63].
Table 3.1 lists some of the extreme properties of Rydberg atoms and compares them to

ground state atoms. As one example, the properties are calculated for 100S1/2 in 87Rb.
From the given scaling laws with n∗, corresponding values for other principal quantum
numbers can be estimated. The values for 5S1/2 are taken from [64].

3.2 interaction between two rydberg atoms

The typical picture usually considered when calculating Rydberg-Rydberg interaction
is sketched in Fig. 3.1 (a). Two neutral atoms (these can be different chemical species)
which are separated by the interatomic distance R are each excited to a Rydberg state.
The typical question popping up is: How does the interaction change the energy level of
this pair of Rydberg atoms, and what is the probability to couple to such a doubly excited
state with a light field.

As long as the separation R of the two nuclei is large compared extension of the atoms
the interaction is dominated by the interactions of the Rydberg electrons. In the Born-
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Oppenheimer approximation [65] the two-atom Hamiltonian describing this two-body
problem can then be written in the form

Ĥ(R) = Ĥ0 + Ĥint(R). (3.2)

In this sum Ĥ0 contains the energies of the unperturbed Rydberg states, while Ĥint
represents the interaction between the two valence electrons in the Rydberg state, the
two ionic cores, and the cross terms resulting from interaction of the Rydberg electron of
one atom and the ionic core of the other atom. This standard treatment of two interacting
Rydberg atoms in detail in [66, 31, 67, 68].

Rz

r2r1

atom 1 atom 2

x

y

(a) (b)

Figure 3.1: Interaction of two Rydberg atoms (a) System considered for the calculation
of Rydberg-Rydberg interactions. To simplify the calculations, two Rydberg atoms
with their interatomic axis R aligned along the z-axis of a coordinate system are
regarded. The positions of the respective electrons in atom 1 and atom 2 are denoted
by the labels r1 and r2. The separation R of the Rydberg atoms has to extend the
Le Roy radius RLR such that the wave functions of the atoms do not overlap. (b)
Calculated Le Roy radius for different nS-nS Rydberg pairs in 87Rb according to
eq. (3.4).

As the hyperfine splitting of Rydberg states is typically smaller than the interaction
energy [69, 70, 71], it is convenient to treat the interaction problem in the fine structure
basis. Assuming, that the two Rydberg atoms are distinguishable it is evident to work
with product states |n1L1J1mJ1;n2L2J2mJ2〉 = |n1L1J1mJ1〉 ⊗ |n2L2J2mJ2〉. In this
product basis the operator Ĥ0 reads

Ĥ0 =
∑
n1,L1,J1,mJ1 En1L1J1 |n1L1J1mJ1〉 〈n1L1J1mJ1| ⊗ 1

+ 1⊗∑n2,L2,J2,mJ2 En2L2J2 |n2L2J2mJ2〉 〈n2L2J2mJ2| , (3.3)

where En,L,J is the binding energy of the Rydberg electron in the state |n,L, J ,mJ1〉
defined in eq. (3.1).
An important assumption for the calculation of the interaction energy Ĥint is that the

interatomic distance R is larger than the Le Roy radius [72]

RLR = 2
(√
〈n1L1J1|r̂2

1|n1L1J1〉+
√
〈n2L2J2|r̂2

2|n2L2J2〉
)

. (3.4)
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The terms under the square roots are individual matrix elements for each atom estimat-
ing the size of each valence electron wave function. This requirement ensures that the
electron wave functions do not overlap. Consequently, not the full molecular problem has
to be treated, i.e. both charge overlap interaction and exchange interaction can be ne-
glected. This extremely simplifies the calculation as the electrons can be assigned to their
respective atoms. In Fig. 3.1 (b) the Le Roy radius is plotted for different nS − nS Ryd-
berg pairs of 87Rb atoms to give an example of the length scale on which the calculations
are valid.
The interaction problem is now treated in total analogy to the case of classical elec-

trostatics. Both atoms can be considered as individual charge distributions which can
be expressed in a multipole expansion series [73]. The electrostatic interaction energy of
the atoms then takes the form

Hint(R) =
e2

4πε0

(
1

|R + r2 − r1|
+

1
|R|
− 1
|R− r1|

− 1
|R + r2|

)
. (3.5)

While R is the distance vector pointing from one nucleus to the other, r1 and r2 are the
positions of the two valence electrons given as relative coordinates in the body frame of
the respective atom, like illustrated in Fig. 3.1 (a). Evaluation of the multipole expansion
in this coordinate frame leads to

Hint(R) =
∞∑

κ1,κ2=1

Vκ1κ2

4πε0|R|κ1+κ2+1 , (3.6)

derived in several publications [74, 75, 76]. The exact expression of Vκ1κ2 depends on the
choice of the coordinate systems used to label the positions of the electrons. If it is chosen
such that the z-axis coincides with interatomic axis R, Vκ1κ2 takes the comparatively
simple form

Vκ1κ2 = (−1)κ2
κ<∑

q=−κ<

√√√√(κ1 + κ2
κ1 + q

)(
κ1 + κ2
κ2 + q

)
p(1)κ1qp

(2)
κ2−q, (3.7)

with κ< = min(κ1κ2). This still classical result is subsequently transferred into a quan-
tum mechanical expression by canonical quantization - the spherical multipole moments
p
(1)
κq and p(2)κq become spherical multipole operators p̂(1)κq and p̂(2)κq , operating on the Ryd-

berg electron of the first and second atom, respectively. The operators are of the form

p̂(i)κq = e r̂κi ·
√

4π
2κ+ 1

ˆYκq(ϑ̂i, ϕ̂i) , (3.8)

where ˆYκq(ϑ̂, ϕ̂) are spherical harmonics. Similarly, the electron wave function ψ(r,ϑ,ϕ)
separates into a radial part RnLJ (r) and an angular part YLSJmJ

(ϑ,ϕ) as a product
state

ψ(r,ϑ,ϕ) = RnLJ (r)·YLSJmJ
(ϑ,ϕ), (3.9)
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in total analogy to the Hydrogen atom because the potential is radially symmetric [77].
As a consequence, the radial and angular matrix elements in eq. (3.8) can be indepen-
dently evaluated according to the general formalisms described in B.2 and B.3.

The multipole expansion in eq. (3.6) can be considered as a series expansion of the
interaction potential in powers

% = κ1 + κ2 + 1 (3.10)

of the inverse interatomic distance R. Of course, as neutral atoms do not have a net
charge, the lowest multipole moment in this power series is the dipole moment. Therefore
the series expansion of the interaction potential only starts with % = 3.
With this method calculation of the Rydberg-Rydberg interaction boils down to the

evaluation of matrix elements up to a certain order and a large number of input states.
Subsequent numerical diagonalization of the Hamilton operator of (3.2) gives the new
eigenenergies and eigenstates in the presence of interaction.

Hitherto, for the theoretical modeling of Rydberg experiments it was mostly sufficient
to calculate the interaction problem perturbatively [31, 78]. In doing so, only the lowest
order in the interaction Hamiltonian (3.6) is taken into account. In the case of weak inter-
actions, where the level shift caused by the interaction is much smaller than the splitting
of nearby energy levels (perturbation theory is anyway only valid in this regime), the
interaction induced energy shift is determined by second order non-degenerate pertur-
bation theory and can be calculated by [79]

∆Eint =
∑
i6=j

|〈ψinLJmJ |Vdd|ψ
j
nLJmJ

〉|2

Ei −Ej
. (3.11)

Here, Vdd denotes the dipole-dipole operator resulting from evaluation eq. (3.6) only to
the first order, i.e. for κ1 = κ2 = 1. The resulting 1/R3 dependence of Vdd manifests in
a van-der-Waals type interaction of the form

VvdW = −C6
r6 , (3.12)

where the C6 coefficient is strongly scaling with the principal quantum number as (n∗)11

and can be angular dependent [80].
In contrast, sec. (3.3.1) discusses an example where the higher order terms in the series

expansion of eq. (3.6) become relevant and result in deviations from the van-der-Waals
regime. The order at which the expansion series can be reasonably truncated in general
increases with decreasing interatomic distance between the atoms. Then, the shift caused
by the interaction exceeds the spacing of neighboring states.
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3.2.1 External fields

Besides the high interaction among Rydberg atoms, the weak binding energy and the
large extend of the electron wave function also result in a large sensitivity of Rydberg
atoms to electric fields. This allow to precisely tune the energies of Rydberg atoms,
for example to enhance interactions by tuning to Förster resonances where the interac-
tion strength can be efficiently enhanced by the degeneracy of two Rydberg levels, see
sec. (3.3.2).

Under the assumption that the electric field is static and homogenous, but points in an
arbitrary direction with respect to the interatomic axis, the electric interaction energy
takes the form

V̂e = −d̂ · E with d̂ = er̂, (3.13)

where d̂ is the electric dipole operator. To calculate the interaction in the presence of an
electric field, this term has to be added to the Hamiltonian of eq. (3.2). Care has to be
taken as the electric interaction only acts on single Rydberg atoms and not on the pair
state, thus the final Hamiltonian takes the form

Ĥ(R) = Ĥ0 + Ĥint(R) + V̂e ⊗ 1 + 1⊗ V̂e. (3.14)

In order make use of the formalism introduced in B.3 for the calculation of matrix
elements, the electric field operator V̂e has to be transferred into the spherical basis
{e± = ∓ 1√

2(ex∓ iey), e0 = ez}. After the transformation the components of the electric
field are given by

E± = ∓ 1√
2
(Ex ± iEy) , E0 = Ez. (3.15)

This leads to the expression for the interaction of an atom with an electric field according
to

−d̂ · E = −e r̂·
√

4π
3
(
Ŷ1,0E0 − Ŷ1,1E− − Ŷ1,−1E+

)
, (3.16)

with spherical harmonics Yκq(ϑ̂, ϕ̂).

To get an impression how an electric field interacting with a Rydberg atom changes
the energy-levels of the atom, Fig. 3.2 shows a Stark-map in the vicinity of the 100S1/2
state of 87Rb. For low angular momentum states with L < 4 the non-integer quantum
defects lift the degeneracy of the different levels. For this reason, when the energy shifts
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Figure 3.2: Rydberg atoms in an electric field (a) Stark map for 87Rb in the vicinity of
100S1/2. The states with low angular momentum quantum number L < 4 show
a quadratic Stark effect as the quantum defects δnLJ lift the degeneracy of the
levels. On the other hand, high L states show a linear Stark effect as the levels are
degenerate. (b)+(c) More detailed view of the Stark effect for 100S1/2 and 98D1/2.
As these states are not degenerate, they obey a quadratic Stark effect until the
manifold states mix in.

are calculated perturbatively, the first correction is provided by the second order term.
As a consequence, the level shift

∆EStark =
α

2 |E|
2 (3.17)

increases quadratically with the electric field. On the other hand, for high angular mo-
mentum states (δnLJ = 0) degenerate perturbation theory has to be used. Mixing of
states with different parity results in a nonzero first-order contribution. As a conse-
quence, states with L > 4 experience a linear Stark effect. Both effects can be nicely
seen in Fig. 3.2.
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3.2.2 Restriction of the basis size

Calculation of the matrix elements and subsequent numerical diagonalization of the
Hamiltonian (3.14) for different interatomic distances R yields the new eigenenergies and
eigenvectors in the presence of interaction. Further evaluation yields potential curves in
the presence of interaction and their overlap with unperturbed |n1L1J1mJ1;n2L2J2mJ2〉
pair states. From these quantities like e.g. the optical excitation strength for doubly
excited Rydberg states can be derived. For highest precision this requires in principle
inclusion of a large number of states and arbitrary orders in the multipole expansion.
As a consequence the matrix presenting the interaction Hamiltonian becomes extremely
large and numerical diagonalization impracticable. However exploitation of some symme-
tries and selection rules allows to shrink the basis size and make fast computation feasible.

One major restriction on the number of basis states is a direct consequence of the
selection rules for the matrix elements in the multipole operator p̂κq. These are listed in
table 3.2, derived from the symmetry properties of the spherical harmonics Ŷκq(ϑ,ϕ).

quantum number selection rule
principal quantum number n no restriction

angular momentum L L→

L
′ ± 0, 2, ...,κ for even κ

L′ ± 1, 3, ...,κ for odd κ
total angular momentum J J → J ′ ± 0, 1, ...,κ with J + J ′ ≥ κ

magnetic quantum number mJ mJ → m′J + q with q ∈ {−κ,−κ+ 1, ...,κ}

Table 3.2: Selection rules for multipole operators The selection rules for the single atom
matrix elements 〈nLJmJ |p̂κq|n′L′J ′m′J〉 of the multipole operators p̂κq allow a reduc-
tion of the number of basis states taken into account for the interaction calculation.
These selection rules are calculated from the symmetry properties of the spherical
harmonics Ŷκq(ϑ,ϕ).

On top, the rotational symmetry about the interatomic axis results in the conserva-
tion of the projection of the total angular momentum onto the interatomic axis. As for
the calculations interatomic axis and quantization axis are identical, the total magnetic
quantum number M = mJ1 +mJ2 is conserved as well, limiting the size of the basis
even more.

Further cutoff criteria have to be determined individually and depend on the particular
interaction problem which has to be solved. The scaling of eq. (3.6) with the inverse
interatomic distance to the power of % suggests that it is reasonable to limit the orders
in the multipole expansion. Especially for large interatomic distances it is sufficient to
include only dipole-dipole interaction. Only with decreasing distance R between the
Rydberg atoms, higher order terms in the series expansion become relevant. Sec. (3.3.1)
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discusses an experiment, where higher orders in the multipole expansion lead to new
features.
The possibility to restrict the order % also implies to reduce the difference ∆L of the

angular momentum (see table 3.2. However, attention has to be paid when an electric
field is included (compare Fig. 3.2). The strength of the dc-Stark effect strongly depends
on the degenerate manifold states with L > 4, thus restriction of L falsifies energy levels
in this case.
Furthermore, Fig. 3.3 reveals that the radial matrix elements 〈nLJmJ |r|n′L′J ′m′J〉

and 〈nLJmJ |r2|n′L′J ′m′J〉 showing up in the dipole-moment and quadrupole-moment
operators peak around n = n′. This observation allows to take into account only states
with a small difference in principal quantum number. This criterion goes hand in hand
with limiting the maximum energy difference between pair sates, motivated by the form
of the perturbatively calculated interaction energy (eq. (3.11)).
Due to this large number of possible constraints, the convergence of the calculation has

to be tested for each Rydberg interaction problem individually. If necessary, the basis
size has to be increased until convergence is reached. An elaborate discussion on this
topic is provided in [68].
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Figure 3.3: Numerically calculated radial matrix elements (a) Radial dipole matrix ele-
ments for rubidium for different dipole transitions 〈n1L1J1|r|n2L2J2〉 with n1 = 100
and varying principal quantum number n2. (b) Radial quadrupole matrix elements
for different quadrupole transitions 〈n1L1J1|r2|n2L2J2〉 at fixed n1 = 100. The
strong decrease of the matrix elements with large differences ∆n = n1− n2 legiti-
mates the restriction of the basis size by the principal quantum number n.

3.2.3 Angular dependent Rydberg interaction

As mentioned before, the derivation of Vκ1κ2 given in eq. (3.7) requires alignment of the
interatomic axis R with the z-axis (quantization axis) of the coordinate system in which
the interaction is calculated. On the other hand, in an experiment the quantization axis
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Figure 3.4: Rotation of the coordinate system
For a pair of atoms whose interatomic
axis R is not parallel to the z-axis of a
lab-coordinate system, eq. (3.7) cannot
be applied. However, first performing
the calculations in a coordinate system
Ccalc and subsequent rotation of the re-
sults by an angle ϑ around ylab = ycalc
allows to perform the calculation. To do
so, the atoms have to be placed in the
xz-plane.

is defined by e.g. the propagation direction of excitation lasers or the direction of strong
magnetic fields. In a three-dimensional geometry, the interatomic axis of a pair of Ry-
dberg atoms can thus enclose an angle ϑ with the quantization axis. As a consequence
the expression for Vκ1κ2 is more complicated such that the evaluation of the multipole
operators becomes more involved.

Alternatively, the calculations can be simplified by choosing an appropriate coordinate
system Ccalc for the calculation, in which the condition for the validity of eq. (3.7) is
satisfied. Subsequently the results can be rotated into the lab-coordinate system Clab by
a proper choice of rotation matrices. If Clab is chosen such, that the atoms are lying in the
xz-plane, transformation into the coordinate system for the calculation requires rotation
by an angle ϑ around the y-axis (Fig. 3.4). The states |nLJmJ〉lab and |nLJmJ〉calc, in
the lab-coordinate system respective the coordinate system for the calculation, are then
related via Wigner-d-matrixes [81]

|nLJmJ〉lab =
∑
m′J

dJmJm
′
J
(ϑ) |nLJm′J〉calc . (3.18)

I.e. the states in the lab-coordinate system are superpositions of the states in the fixed
coordinate system. As a consequence, the total magnetic quantum number M = mJ1 +
mJ2 is not preserved any more. This means, that different Zeeman spinstates couple
under the presence of interaction [80]. In chapter 6 it will be shown that this influences
the nonlinearity in experiments applying an EIT scheme to Rydberg D-states.

3.3 applications of the rydberg potential calculation

This section discusses two examples where the full calculation of the Rydberg interac-
tion is relevant for recent experiments. Comparison with experimental results enables
validation of the numerical results and demonstrates the applicability of full potential
calculations to state-of-the-art experiments. It also allows to benchmark the influence of
the basis size and of the truncation order on the interaction potentials.
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3.3.1 Relevance of higher-order multipole terms and basis size

The relevance of multipole terms in the interaction potential of order higher than dipole-
dipole, i.e. % > 3 in equation (3.10), has been highlighted in several recent experi-
ments [82, 83, 84, 68]. One example among many others is the observation of Rydberg
aggregation dynamics in a vapor cell at room temperature by Urvoy et al. [84]. In this
experiment, the high atomic densities and the spectral width of the laser pulses allow to
probe Rydberg interaction at short interatomic distances. The main observation of this
experiment is that the correlated excitation of Rydberg atoms is driven by the dipole-
quadrupole (% = 4) contribution to the interaction.
More specifically, this experiment investigates the Rydberg excitation in a Cesium

vapor cell. The excitation is driven by a two-photon scheme with a detuning of ∆ =
ωLaser − ωAtom = −2 GHz with respect to the 32S Rydberg state. Only including terms
with % = 3 in the multipole expansion corresponding to dipole-dipole coupling, results in
a repulsive van-der-Waals type interaction, shown in Fig. 3.5 (a). This suggests that the
presence of a Rydberg atom does not influence the probability to excite another Rydberg
atom with the red-detuned excitation lasers.
However, when dipole-quadrupole interaction (% = 4) is included in the series ex-

pansion, several close-by pair states are admixed to the |32S1/2; 32S1/2〉 pair state.
This results in additional potential lines appearing both at lower and higher ener-
gies compared to the addressed state (Fig. 3.5 (b)). Following [84], the admixture of
|32S − 32S〉 = |32S1/2,mJ = 1/2; 32S1/2,mJ = −1/2〉 to any Rydberg pair state |ψ〉
is quantified by ε|32S−32S〉(∆) = |〈ψ|ss〉|. The calculated admixtures are shown in the
color coding in Fig. 3.5. Any admixture at the detuning ∆ of the excitation lasers re-
sults in efficient optical excitation of additional Rydberg atoms at specific distances to
a first seed excitation. In particular, Urvoy et al. identified the resulting resonances at
R/RLR ≈ 2.1 (where RLR is the Le Roy radius) as the dominant underlying mechanism
for the correlated Rydberg aggregation observed in the experiment [84].
Based on this finding, an obvious question is how additional multipole orders further

modify the interaction potential. Fig. 3.5 (c), shows the resulting potential map when
one more order in the series expansion is taken into account, this corresponds to the % =
5 term including up to quadrupole-quadrupole and dipole-octuple interactions. While
the admixture at the position relevant for the experiment remains almost unchanged,
significant effects occur only at small interatomic distances 1 < R/RLR < 1.7, for
example in the detuning region between 2 GHz and 4 GHz.
For better comparison, Fig. 3.5 (d) shows the for the experiment relevant quantity

ε|32S−32S〉(∆ = −2 GHz) for the three different potential calculations (% = 3, 4, 5). While
the inclusion of the % = 5 terms modifies ε|32S−32S〉 at short distances, the main relevant
resonance feature at R/RLR ≈ 2.1 is not modified compared to the expansion up to
% = 4. Thus, the quantitative differences in the potential landscape due to the next
higher-order terms do not affect the conclusions in [84].
In contrast, the features at small distances are relevant for example for formation of

bound pair states of Rydberg atoms [85, 82, 86, 67, 87], requiring inclusion of even further
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orders in the calculation [87, 68]. In general, when increasing %, care has to be taken
that the pair state basis truncation is appropriately adapted to include enough coupled
states. The constraints used in this example on the difference in quantum numbers of
the individual included Rydberg states are ∆n = 5 and ∆L = 6 with respect to the
state |32S1/2, 32S1/2〉. These cutoff criteria are motivated by the selection rules for the
different interaction orders and the scaling of the electric multipole matrix elements as
discussed in sec. (3.2.2).
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Figure 3.5: Influence of higher order terms on the interaction potential (a)-(c) Poten-
tial landscape around the unperturbed Cs |32S1/2; 32S1/2〉 state calculated up to
order 1/R% in the interaction series. Specifically, the values chosen for the potentials
are % = 3 (a), % = 4, (b) and % = 5 (c). (d) Admixture ε|32S−32S〉 to the perturbed
pair states for a cut through the potential at a red detuning of ∆ = −2 GHz. Cuts
for % = 4 and % = 5 are shifted by an offset of 0.2 and 0.4, respectively. The in-
clusion of the dipole-quadrupole term (% = 4) results in the resonance feature at
R/RLR ≈ 2.1, which is identified in [84] as the dominant underlying mechanism for
the experimentally observed formation of Rydberg aggregates.

3.3.2 Angular dependence of the interaction near a Förster resonance

The second example demonstrates the calculation of anisotropic Rydberg interactions in
the presence of electric fields, as discussed in sec. (3.2.1) and sec. (3.2.3). The calculations
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are motivated by the beautiful experiments of Ravets et al. in [88]. Here, two single 87Rb
atoms were prepared in their ground state in two tightly focussed optical dipole traps.
Both the distance R between the two atoms and the angle ϑ between the interatomic
axis and the external fields could be precisely tuned. Using a two-photon excitation
scheme, both atoms were excited to the |59D3/2,mJ = 3/2〉 state by applying a π-
pulse. In the pair state basis and at zero electric field, the state |DD〉 = |59D3/2,mJ =
3/2; 59D3/2,mJ = 3/2〉 is detuned by 8.69 MHz from the state |PF 〉 = |61P1/2,mJ =
1/2; 57F5/2,mJ = 5/2〉. Due to the different polarizabilities of the states, both pair
states could be tuned into degeneracy by applying a weak electric field of 34.3 mV/cm.
With this approach, Ravets et al. were able to map out the angular shape of the electric
dipole-dipole interaction between the two atoms [88].
More specifically, the strength of the interaction was measured by letting the two-

atom system evolve after the Rydberg excitation and in the presence of the electric
field. After a variable hold time, a second optical π-pulse coupling to the |DD〉 state
was employed to bring the atoms back to their ground state. By measuring the ground-
state population after the full sequence, the time-evolution of the |DD〉 Rydberg pair
state population could be reconstructed. Performing this experiment for various angles
ϑ and fixed distance R = 9.1 µm resulted in the beautiful dipole-dipole pattern of the
interaction shown by the blue crosses in Fig. 3.6 (d).
This experiment is especially suited to benchmark the interaction calculation including

finite electric fields and different angles ϑ. As a first example, Fig. 3.6 (a) and (b) show
the interaction potentials obtained for ϑ = 0◦ (atoms aligned with respect to the external
fields) and ϑ = 14◦, respectively. On top of the potential lines which are shifted by the
interaction, here the probability ak = |〈DD|ψk〉|2 to find an overlap of the initially
prepared state |DD〉 with the new eigenstates |ψk〉 is shown. For ϑ = 0◦, Fig. 3.6 (a)
shows that a two-level approximation is valid for most of the distances between 7 µm
and 20 µm. Most importantly, at the experimentally relevant distance R = 9.1 µm, the
system can be treated as a two-level system.
However, the situation changes already dramatically for an angle of ϑ = 14◦, where the

two-level approximation breaks down. This is a consequence of the mixing of different fine
structure states of the |57F 〉 state and of different magnetic levels coupled for non-zero
interaction angles as M is not conserved anymore.
From the calculated overlap probabilities ak, it is straight-forward to calculate the

coherent time evolution of an excited Rydberg state in the presence of interaction.
When the interaction is turned on by jumping on resonance with the electric field,
the time-dependent probability of being in the state |DD〉 is given by p|DD〉(t) =

|∑k ak exp
(
iEk
h̄ t
)
]|2. Examples for two different angles and R = 9.1 µm are shown in

Fig. 3.6 (c). For ϑ = 0◦ the time evolution yields an undamped sinusoidal oscillation
with a frequency of ν = 9.2 MHz, corresponding to the splitting of the most strongly
populated pair potentials. In the case of ϑ = 14◦ the significant coupling to multiple
other pair states leads to a dephasing that effectively damps out the Rabi oscillations.
These results agree very well with the experimental time-evolution reported in [88].
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Fig. 3.6 (d), shows all frequencies contributing to the time evolution at an interatomic
distance R = 9.1 µm and varying angles ϑ, obtained from the energy differences Em−En
of the pair states overlapping with the initial state (red points). The size of each point
encodes the relative weight of each frequency, which is proportional to am · an. For
comparison, the single frequencies at each angle ϑ extracted from the experiment are
shown by the blue crosses. One can see that for 0◦ ≤ ϑ ≤ 5◦ and for 55◦ ≤ ϑ ≤ 90◦ the
calculations find a single dominant contribution, which is in excellent agreement with the
experimental data. In contrast, for angles outside these regions, the increased number of
pair states contributing to the time evolution explains the damped oscillations measured
in the experiment.
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Figure 3.6: Angular dependence of the Rydberg interaction in the presence of elec-
tric and magnetic fields (a) Pair potential of the state |DD〉 = |59D3/2,mJ =
3/2; 59D3/2,mJ = 3/2〉 tuned into Förster resonance with the state |PF 〉 =
|61P1/2,mJ = 1/2; 57F5/2,mJ = 5/2〉 by applying an electric field of 34.3 mV/cm
for ϑ = 0◦, i.e. both atoms aligned along the quantization axis. (b) Same pair
potential as in (a) but calculated for an angle ϑ = 14◦ between the interatomic
and the quantization axis. (c) Time evolution of the probability to find the system
in the |DD〉 state in the presence of an electric field. For ϑ = 0◦ the probability
p|DD〉(t) shows undamped oscillations with a frequency of 9.2 MHz. The multi level
structure occurring at ϑ = 14◦ in (b) results in a damping of the oscillations due to
dephasing (red line). (d) Angular dependence of the multiple oscillation frequen-
cies out of the |DD〉 state. To illustrate how strong different frequencies do show
up in the time evolution the size of the points encodes the relative weight of each
frequency.





4 Photon interaction in an atomic
three-level ladder system

Based on the description of interacting Rydberg atoms in chapter 3, this chapter will
give a brief overview how these strong Rydberg interactions are used to mediate giant
interactions between individual photons. In the first part of this chapter, a three-level
ladder type atomic system is described, which is coupled by two laser fields, a weak probe
field and a strong control field. Depending on parameters like detunings and intensities
of the laser fields such a driven three-level system can exhibit rich physics.

This chapter first discusses the treatment of the coupled system including decay and
dephasing processes via the common density matrix approach. Having found the time
evolution of a single atom this allows to subsequently predict the transmission properties
through an ensemble of atoms including absorption and diffraction. For a consistent
notation throughout the thesis, the two distinct cases of electromagnetically induced
transparency and offresonant two-photon excitation are introduced as they are applied
in chapters 6 and 7. Finally the derived transmission properties of such a coupled three-
level system are brought together with the results found in chapter 3 about interacting
Rydberg atoms. In this context both the dissipative and dispersive EIT regime are
discussed qualitatively and possible applications presented.

4.1 driven three-level system in the density matrix approach

The system mostly investigated throughout this thesis is illustrated in Fig. (4.1). A weak
probe field Ωp couples the atomic ground state |g〉 with the intermediate state |e〉, which
in turn is coupled to the Rydberg state |r〉 by a strong control field Ωc. To provide
strong laser coupling the transitions |g〉 ↔ |e〉 and |e〉 ↔ |r〉 are dipole allowed, directly
implicating that |g〉 ↔ |r〉 is dipole forbidden. The detunings ∆p = h̄(ωp − ωge) and
∆c = h̄(ωer − ωc) present the energy differences between the coupling fields and the
atomic transitions.
While the ground state is stable, both the intermediate and Rydberg states can decay
with their respective decay rates Γe � Γr determined by the natural linewidth. The
decay rates result in population transfer from energetically higher lying states to lower
lying states. Additionally, the dephasing terms γe and γr take into account effects like
finite laser linewidth, atom-atom collisions or thermal movement reducing the coherence
of the system.

29
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Figure 4.1: Level scheme of a driven three-level sys-
tem. The ground state |g〉 in which the atoms
are initially prepared is coupled to the Rydberg
state |r〉 via a weak probe field Ωp and a strong
coupling field Ωc. With respect to the atomic
transitions the frequencies of the driving laser
fields are detuned by ∆p and ∆c, respectively. On
top of the coherent dynamics the system exhibits
decay due to the natural decay rates Γe, Γr, but
also dephasing with γe, γr caused by collisions
and stray fields.

For modelling the system it is convenient to move to the dressed state picture where
the different energies of the involved states and laser fields are reduced to the detunings
∆p and ∆c. Then, after applying the rotating wave approximation which neglects the fast
rotating terms and moving into the rotating frame, the Hamilton operator describing the
atom-light interaction of such a three-level system takes the form

H3level =
h̄

2


0 Ωp 0

Ωp 2∆p Ωc

0 Ωc 2(∆c − ∆p)

 . (4.1)

The off-diagonal elements represent the strength of the light coupling in terms of a Rabi
frequency Ωj = −djEj

h̄ where dj is the dipole matrix element of the according transi-
tion and Ej the amplitude of the electric field driving the transition. Note that in the
common literature two different conventions are used. Depending on the definition of the
electric field in complex notation or using sin/cos the Rabi frequencies might appear as
2Ω instead of Ω. In this thesis all formulae are written in consistency with the notation
specified in eq. (4.1).

Neglecting the decay- and dephasing effects the time evolution of the system can be
determined by solving the time-dependent Schrödinger equation. However, when decay
and dephasing terms are included, treatment by the density matrix approach allows both
coherent and incoherent evolution to be accounted for. The density matrix of a single
atom with the three discussed states is defined as

ρ =


ρgg ρge ρgr

ρeg ρee ρer

ρrg ρre ρrr

 , (4.2)

where the diagonal elements represent the populations of the individual states and the
off-diagonal terms are the coherences. The populations give the probability to find the
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atom in a specific state at time t. As the total population has to be conserved the
condition ρgg + ρee + ρrr = 1 has to be satisfied for all times t, i.e. decay out of an
excited state has to increase the population of a lower lying state. On the other hand,
the value of the coherences in the density matrix are a measure for the phase relation
between the different states. Vanishing coherences mean that the phase between two
states is totally random such that no coherent processes, like Rabi oscillations, can be
observed.
In the presence of the atom light coupling described by H3level the time evolution of

the density matrix is governed by the Lindblad Mater-equation

∂

∂t
ρ(t) = − i

h̄
[H, ρ] +L(ρ). (4.3)

where [, ] denotes the commutator of ρ(t) and H3level. The additionally introduced Lind-
blad operator L(ρ) comprises the effects resulting from the decay terms (Γe, Γr) and
dephasing rates (γe, γr). The non-trivial derivation of this term is presented in [89],
leading to

L(ρ)/ h̄ =


Γeρee −Γe

2 ρge 0
−Γe

2 ρeg −Γeρee −Γe
2 ρer

0 −Γe
2 ρre 0

+


0 0 −Γr

2 ρgr

0 Γrρrr −Γr
2 ρer

−Γr
2 ρrg −

Γr
2 ρre −Γrρrr

 (4.4)

+


0 −γe

2 ρge 0
−γe

2 ρeg 0 −γe
2 ρer

0 −γe
2 ρre 0

+


0 0 −γr

2 ρgr

0 0 −γr
2 ρer

−γr
2 ρrg −

γr
2 ρre 0

 .

The first two parts in this representation of L(ρ) account for the contributions caused
by the decay rates Γe and Γr. As the radiative decay only leads to a occupation of lower
lying levels and as a consequence of the selection rules for dipole transitions, population
can only decay from |r〉 to |e〉 and |e〉 to |g〉, respectively. Interestingly, the coherences
only decay with half the decay rates.
Both the third and forth terms in L(ρ) include the dephasing mechanisms the system

is exposed to. These parts take the same form except that the dephasing only affects the
coherences and not the populations.
In principle, eq. (4.3) allows to calculate the full time evolution of all populations and

coherences of the system. However, on timescales t � Γ the system reaches a steady-
state due to damping by the decay rates. In comparison, the experiments take place on
a longer timescale, thus it is sufficient to calculate the steady state solution of eq. (4.3)
with ∂

∂t
= 0. These steady state results are discussed in the following sections for different

parameter ranges of Ωc, ∆p and ∆r in view of the experimental results of this thesis.
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4.2 transmission through an atomic medium

The density matrix approach described in the section before allows determining the
evolution of the atomic states resulting from all coherent and incoherent atom-light
interactions. The aim of this section is to find out how the back action of the atom-light
coupling influences the laser fields. From the experimental point of view, in principle
the transmission of both control and probe field could be monitored. As the control field
however is only used to achieve strong coupling to the Rydberg state and all nonlinearities
discussed within this thesis occur in the probe field, the discussion is restricted to the
latter one.
In order to calculate the transmission properties of the probe field Ωp self-consistently,

one has to take into account the effect of the light-induced dipole moment of an atom
onto the light field itself [90]. The induced dipole moment 〈d〉 is connected to the density
matrix by

〈d〉 = −er (4.5)
= −e (|g〉〈g|+ |e〉〈e|)︸ ︷︷ ︸

=1

r (|g〉〈g|+ |e〉〈e|)︸ ︷︷ ︸
=1

= µegρeg + µ∗egρge,

where µeg = µ∗ge is the dipole-matrix element of the |g〉 ↔ |e〉 transition. The matrix
elements 〈e|r|e〉 and 〈g|r|g〉 in eq. (4.5) vanish due to parity considerations. As each atom
in an ensemble of N atoms confined in a volume V contributes with its induced dipole
moment, a macroscopic polarizability P of the ensemble given by

P =
N

V

(
µegρeg + µ∗egρge

)
(4.6)

can be defined. This approach is only valid if the ensemble satisfies some constraints. First
of all, there must not be collisions between the atoms changing the internal state of the
atoms. Second, the atoms should couple to different modes such that no coherent effects
between the atoms occur. This sets a limit on the distance between the atoms which is
given by the wavelength. It should be also noted at this point that in this derivation the
polarization caused by all other atomic coherences, like e.g. ρer is completely negligible.
This is only valid as long as the Rabi frequency of the probe is very weak and the
population of the initial state ρgg is hardly changed.
Having found the polarizability induced in the atomic medium, its back action on the

electric field is now governed by the wave equation for the electric field in a polarizable
medium without charge sources which takes the form [73](

∆− 1
c2

∂

∂t2

)
E(r, t) = 1

ε0c2
∂2

∂t2
P (r, t). (4.7)
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A solution to the wave equation (4.7) are plane waves, which in the complex notation
are given by

E(r, t) = E+(r, t) exp[i(kz − ωt)] + E−(r, t) exp[−i(kz − ωt)]. (4.8)

For simplicity, the direction of propagation of this monochromatic wave (wave vector k)
is limited to the z-direction. However, the amplitudes E+(r, t) = E−(r, t)∗ can vary in
time and both the propagation direction and the transversal directions x and y. As the
polarizability P in eq. (4.6) is induced by the electric field it has the same spatial and
temporal dependence such that a proper expression is given by

P (r, t) = P+(r, t) exp[i(kz − ωt)] +P−(r, t) exp[−i(kz − ωt)]. (4.9)

With these definitions for E(r, t) and P (r, t), the individual terms in eq. (4.7) read

∆E(r, t) =

(
∆ + 2ik ∂

∂z
− k2

)
E+(r, t) exp[i(kz − ωt)] + c.c. (4.10)

∂2

∂t2
E(r, t) =

(
∂2

∂t2
− 2iω ∂

∂t
− ω2

)
E+(r, t) exp[i(kz − ωt)] + c.c.

∂2

∂t2
P (r, t) =

(
∂2

∂t2
− 2iω ∂

∂t
− ω2

)
P+(r, t) exp[i(kz − ωt)] + c.c.

Under the assumption that focusing and diffraction can be neglected, which is a some-
what crude approximation as a dense atomic media can show strong lensing effects [91],
the transversal terms can be neglected such that e.g. ∆E+(r, t) reduces to ∂2

∂z2E+(r, t).
Another justified assumption which holds for all the experiments described within this

thesis is that the envelopes/amplitudes of the electric field only change slowly compared
to the oscillation frequency ω. Mathematically this condition can be expressed by the
terms

kE± � ∂E±
∂z

(4.11)

ωE± � ∂E±
∂t

ωP± � ∂P±
∂t

.

This so-called slowly varying envelope approximation (SVEA) causes vanishing higher
order derivatives in eq. (4.10)[92]. Using these approximations and ω = c· k, substitu-
tion of eq. (4.10) into the wave equation (4.7) leads to(

∂

∂z
+

1
c

∂

∂t

)
E+(r, t) =

ik

2ε0
P+(r, t) (4.12)(

∂

∂z
+

1
c

∂

∂t

)
E−(r, t) = − ik

2ε0
P−(r, t).
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When only the spatial dependence of the electric field is considered, the solutions of these
differential equations are governed by

E+(r) = E+(0)· exp
(
ik

2 χz
)
+ const. (4.13)

E−(r) = E−(0)· exp
(
−ik2 χz

)
+ const.,

where χ is the electric polarizability which connects the induced polarizability P with
the applied electric field E by

P = ε0χE. (4.14)

From this result and taking into account eq. (4.6) one directly finds that the transmission
and refraction properties of an atomic system are determined by atomic density N/V ,
the dipole matrix elements µeg = µ∗ge and the coherences in the density matrix ρge = ρ∗ge.
While the real part of χ results in a phase shift of the light travelling through the atoms,
the imaginary part leads to absorption in the medium. Including the Rabi frequency
h̄Ωp = −µegE+, the resonant scattering cross section σ0 = 3λ2

2π and the decay rate
Γe =

ω3µ2
eg

3πε0 h̄c3 the spatial dependence of the intensity can be written as

I(r) =
1
2εcE+(r)E−(r) (4.15)

= I0 exp
(
−N
V

γ

Ωp
σ0 Im(ρeg)z

)
,

which results in an exponential decay of transmission through the atomic ensemble as the
sign of Im(ρeg) is always positive. From the experimental point of view, the transmitted
intensity through an atomic medium with length L is of interest. Thus it is convenient
to introduce the optical density OD as a quantity, which is determined by

OD =
N

V
σ0L. (4.16)

Correspondingly reaching high OD either requires a long medium at relatively low atomic
density or high atomic densities. Up to now, the derivation assumed a one dimensional
medium which of course is a somewhat crude approximation for a realistic experiment.
In reality the atomic density is a 3-dimensional quantity n(r) superimposed with a probe
field with Gaussian intensity distribution I(r). As a consequence the optical density for
such a geometry is determined by the integral

OD = σ0

∫
n(r)I(r)dr (4.17)

averaging over the different spatial distributions.



4.2 transmission through an atomic medium 35

At the same time, and also according to the Kramers-Kronig relation, eq. (4.13) in-
cludes as well the dispersion properties the atoms impose on the probe field. A similar
derivation as for the transmission yields the real part of the refraction index or equiva-
lently the phaseshift

δφprobe =
Γe

2Ωp
OD· Re(ρeg) (4.18)

which the probe light picks up when propagating through the medium compared to light
traveling through vacuum.

4.2.1 Application on a driven two level system

In the absence of the control field Ωc the Rydberg level |r〉 is uncoupled, such that the
Hamilton (4.1) and the Lindblad (4.4) operators reduce to 2× 2 matrices describing a
two-level system. As the transmission properties of such a system are well-known (Lorentz
model) it is an ideal candidate to test the derived formulae of eq. (4.15) and (4.18).
Solving the Master equation for the steady state of the density matrix provides

ρeg,2level =
iΓe(γe + Γe − 2i∆p)Ωp

Γe((γe + Γe)2 + 4∆2
p) + 2(γe + Γe)Ω2

p
(4.19)

as solution of the relevant coherence in the density matrix. Based on some experimental
parameters this expression can be further simplified. First, the experiments carried out
in this thesis employ |g〉 = |5S1/2〉 and |e〉 = |5P3/2〉, realizing the strongest transition
in 87Rb with a decay rate γe = 2π· 6.05 MHz [93]. At the temperatures of the atoms
in a cold atom experiment, typically a few micro-kelvin, one finds a dephasing rate
γe < 2π· 100 kHz. Thus the sum terms Γe+ γe in ρeg,2level can be approximated by the
decay rate Γe. Second, for all experiments carried out in the scope of this thesis the probe
fields is very weak with a maximum value of Ωp < 1 MHz, allowing to neglect terms of
the order (Ωp/Γe)2. Under these approximations plugging eq. (4.19) into eqs. (4.15) and
(4.18) yields

T2level = exp

− OD

1 + 4∆2
p

Γ2
e

 (4.20)

and

δφ2level = OD
Γe∆p

1 + 4∆2
p

Γ2
e

. (4.21)

As expected the absorption of the two-level system is well described by a Lorentzian in
the absence of any inhomogeneous line broadening, plotted for different optical densi-
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ties (OD = 1, 10, 100) in Fig. 4.2 (a). Although the linewidth Γe remains constant, for
different values of OD the width of the absorption valley broadens due to saturation of
transmission. Preparation of a dense atomic ensemble with OD > 10 thus allows blocking
the transmission of probe photons over a wide range. Fitting eq. (4.20) to experimental
data allows extracting the optical density of the atomic cloud. At the same time the
derived phase shift φ2level shows a anomalous dispersion relation (Fig. 4.2 (b)) as it is
expected for a driven two-level system.
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Figure 4.2: Transmission properties with control field turned off (a) Transmission
spectrum of the probe beam through an atomic ensemble of 87Rb atoms in the
absence of the control field. The optical depth (OD) can be varied by changing the
number of the atoms interacting with the probe beam leading to strong absorption.
(b) The two-level system shows an anomalous dispersion with a maximum phase
shift scaling linearly with the OD of the ensemble. For this reason only the result
for OD = 1 is shown here.

4.3 electromagnetically induced transparency

Having shown that the calculated equation for the transmission properties of the probe
beam yield the correct results for the two-level system, in this section the properties of
the full three-level system described in the first section of this chapter shall be discussed.
To this end, the focus is first set to the regime of resonant electromagnetically induced
transparency (EIT ) which is realized when the probe field Ωp and the control field Ωc

are resonant to their respective atomic transition, i.e. ∆c = ∆p = 0. Eq. (4.3) allows in
principle to solve the Master equation analytically for arbitrarily chosen parameters, but
the resulting expression for ρ is rather elaborate. Great simplification can be achieved
in the weak probe limit assuming Ωp � Ωc and Ωp � Γe. For the experiments within
this thesis this approximation is well valid as the intensity of the probe field is only on
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the order of a few photons per microsecond. A derivation in this limit is presented in the
work of M. Fleischhauer et. al. [94], yielding the expression

χEIT =
µ2
egN

ε0 h̄V

(
4δ(Ω2

c − 4δ∆p)− 4∆γ2
13

|Ω2
c + (γ12 + i2∆p)(γ13 + i2δ|2) (4.22)

+ i
8δ2γ12 + 2γ13(Ω2

c + γ13γ12)

|Ω2
c + (γ12 + i2∆p)(γ13 + i2δ|2)

)

for the electric susceptibility χEIT. In this notation the expressions δ = ∆c − ∆p, γ12 =
γe + γe and γ13 = Γr + γr represent detunings and decay rates, respectively. For the
experimental realization involving 87Rb ground- and Rydberg- states, the decay rates
can be approximated by γ12 = Γe and γ13 = γr. This simplification is justified by the
large intermediate state decay rate mentioned before dominating in ultra cold atoms over
the ground state dephasing. On the other hand the long lived Rydberg states are easily
perturbed by external influences like stray electric fields, justifying γr > Γr.

The absorptive and dispersive properties induced onto the probe field by χEIT are
shown in Fig. 4.3 for different parameters. In comparison to the two level system discussed
before, the probe field exhibits a transmission feature exactly on resonance ∆c = ∆p =
0 with the limit T = 1 for vanishing dephasing rate γr of the Rydberg state. The
appearance of the narrow transmission window in the broad absorption valley resulting
from the additional laser field coupling a third level is rather not intuitive but hides
many fascinating properties.
From the equations derived for the probe transmission (eq. (4.15)) and the suscepti-

bility χEIT two quantities which are somewhat important for the following part of this
thesis can be calculated. First, the EIT transmission has a Gaussian line shape with a
spectral width of

δωEIT =
Ω2
c

Γe
1√
OD

. (4.23)

In the absence of any decoherence rate γr of the Rydberg state the transmission peak can
thus be arbitrarily narrow and still feature unity transmission (blue line). In the other
limit it can be extremely broadened by a strong control field Ωc. However, including a
finite decoherence rate γr reduces the maximum transmission on EIT resonance to

TEIT = exp

− OD

1 + Ω2
c

Γeγr

 . (4.24)

As a consequence, at given γr and OD, not an arbitrarily low control Rabi frequency Ωc

can be applied anymore to still achieve reasonable transmission of the probe light. This
effect is visualized in Fig. 4.3 by the yellow and red line showing the EIT transmission
for γr = 2π· 200 kHz at Rabi frequencies Ωc = 2π· 8 MHz and 2π· 16 MHz.
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By increasing Ωc for higher transmission TEIT according to eq. (4.23) the width of
the feature will broaden. As will be demonstrated in sec. 4.5 the width of the EIT
feature influences the strength of the Rydberg nonlinearity, such that in experiments a
compromise between narrow linewidth and high transmission has to be found.

-40 -20 0 20 40

detuning 
p
/2  (MHz)

-10

-5

0

5

10

p
h

a
se

 (
ra

d
)

c
/2 =8 MHz,

r
/2 =0MHz

c
/2 =8 MHz,

r
/2 =0.2MHz

c
/2 =16 MHz,

r
/2 =0.2MHz

-40 -20 0 20 40

detuning 
p
/2  (MHz)

0

0.2

0.4

0.6

0.8

1

tr
a

n
sm

is
s
io

n

(a) (b)

Figure 4.3: Transmission properties when the control field is turned on (a) Trans-
mission spectrum of the probe beam through an atomic ensemble of 87Rb atoms
with a control field at different Rabi frequencies Ωc = 2π· 8 MHz (blue line) and
Ω2 = 2π· 16 MHz (red, yellow line) at OD = 30. The presence of the control field
renders the medium transparent when both laser fields are on resonance with the
atomic transitions. For finite coherence of the Rydberg state γr the transmission on
resonance decreases. (b) Apart from the medium being rendered transparent, the
shape of the dispersive feature changes from anomalous to normal in the case of
EIT. The steepness around resonance depends on the Rabi frequency Ωc of the con-
trol light. This sharp dispersion causes slowing down of light pulses in the medium
to group velocities of a few meters per second.

Experimentally, the effect of EIT was observed for the first time in 1986 in a strontium
vapour [11]. This observation triggered a wide range of theoretical studies to understand
this effect. Within this work, besides many distinct proposals for applications, different
pictures came up to gain a more intuitive understanding of the phenomenon. Among
different others a very intuitive view of EIT is given by S. Harris in [95]: When the
coupling with the strong control field is considered in the dressed state picture, it results
in new eigenstates |±〉 = 1√

2 (|e〉 ± |r〉) with energies E± = ±Ω
2 . Thus the probe field

exhibits two resonances. This by itself does not explain why exactly in the center the
medium becomes transparent. But it can be shown that on resonance the decay from
the dressed states cancels out due to interference.
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4.3.1 Slow Light

Besides the rendering the medium from opaque to transparent, the EIT regime holds an-
other promising effect resulting from the modified dispersive properties. These are shown
in Fig. 4.3 (b) for different parameters as phase shift δφ. Compared to the dispersion of
the two-level system discussed before in Fig. 4.2, the sign of the slope around resonance
changes. Transmitted probe photons thus experience normal dispersion strongly affecting
the propagation of a pulse inside the medium.
The propagation velocity of a light pulse inside a medium is governed by the group

velocity vg which is determined by

vg =
∂ω

∂k
=

(
∂k

∂ω

)−1
=

c

n(ω) + ω ∂n(ω)∂ω

, (4.25)

where n(ω) is the index of refraction and c the vacuum speed of light c. For simplicity
in the following γr = 0 is assumed resulting in Im(n) = 0 as there is no absorption.
The presence of the derivative ∂n(ω)/∂ω in eq. (4.25) can result in extremely low

group velocities in a medium with a steep normal dispersion. Remembering that the
phase shift δφ = 2π

λ (n2− 1)L picked up inside a medium resembles the refractive index,
one finds from Fig. 4.3 (b) that EIT provides the required steep changes. Evaluating
eq. (4.25) around resonance ∆p = 0 yields the expression [94]

vg =
c

1 + N
V σ0

Γe

Ω2
c

(4.26)

which results in a delay time of a probe pulse inside the medium of

τdelay = OD
Γe
Ω2
c
. (4.27)

In principle these equations show that by choosing a low value of Ωc allows achieving
extremely low group velocities. As seen before, this comes along with very narrow EIT
transmission and also loss if at the same time γr does not vanish. When measuring the
delay time of light pulses one therefore has to choose smooth pulses which are in the
frequency domain more narrow than the EIT width δωEIT. So far a record speed of
only 17 m/s was measured in a Bose-Einstein condensate of Sodium atoms in 1997 [10],
though accepting large losses.
The reduction of the group velocity is accompanied by a spatial narrowing of the photon
pulse during the propagation through the medium. As soon as the front part of a pulse
enters the medium it gets slowed down. However, the part of the pulse still outside the
medium moves with speed of light such that it "catches up", thus reducing the length of
the pulse. When the experiment provides high enough OD it is possible to squeeze the
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complete pulse inside the medium1. At the end of the medium the reverse process takes
place such that the pulse recovers its original shape.

4.3.2 Dark State Polaritons

As a consequence of the low group velocity in a EIT medium Fleischhauer and Lukin
introduced the picture of the Dark-state polariton which evolved to become a standard
expression in the field of EIT [12]. Diagonalization of the Hamilton operator eq. (4.1) for
∆c = ∆p = 0 yields new eigenvectors of which one takes the form

|DEIT〉 =
Ωp|r〉 −Ωc|g〉

Ω2
p + Ω2

c
, (4.28)

e.g. its overlap with the intermediate state |e〉 is zero. For this reason this state is referred
to as dark state. An atom in this state can not be transferred to |e〉, thus there is no fast
decay Γe. When only the control field Ωc is turned on the dark state is identical with
the ground state |g〉. Sending now a probe pulse admixes some fraction of the Rydberg
state |r〉 to the dark state. This process enhances the energy of the dark state. Due
to energy conservation this energy has to be taken out of the light field. This means
photonic character is changed into atomic excitation. After the probe pulse reached its
maximum the process is reversed such that in the end the dark state becomes identical
to |1〉 again.
Mathematically this picture is described by the dark state polariton

Ψ(z, t) = cos(ϑ)Ep(z, t)− sin(ϑ)
√
N

V
ρgr(z, t) (4.29)

a superposition of electromagnetic field and atomic coherence. The ratio of the different
terms is determined by the mixing angle tan2(ϑ) = Nσ0cΓe

V Ω2
c
. For high density and small

Ωc for example, the character of the dark state polariton is dominated by the atomic
character which explains the low group velocity in this case.

4.4 off-resonant two photon excitation

Apart from resonant EIT with ∆c = ∆p = 0 the driven three-level system can enter
different regimes as well. Yet of relevance for this work is the regime where the condition
∆c � Ωc, Γe holds. The transmission properties of this regime are shown for OD = 30
and a detuning ∆c = 2π· 100 MHz for different parameters of Ωc and γr in Fig. 4.4 (a).
For γr = 0 the probe field experiences a strong absorption dip at approximately the
detuning of the control field. At the same time Fig. 4.4 (b) shows a maximum in the
population ρrr of the Rydberg state |r〉, i.e. photons of the probe field Ωp are absorbed
and converted into Rydberg atoms. This method to excite stationary Rydberg excitations

1A light pulse with a duration of 1 µs has in vacuum a spatial extend of 300 m. EIT inside a atomic
ensemble can reduce this length to less than a millimeter
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will be used in chapter 7 to subtract exactly one photon from the light field. For vanishing
dephasing of the Rydberg state, the ultimate linewidth of the absorption line is in the
limit ∆c � Ωc solely given by the lifetime of the Rydberg state.
This scheme is used in many experiments for effective excitation of Rydberg atoms as

it brings some advantages compared to direct excitation via UV light [64]. First, it allows
addressing S - and D-Rydberg states which are not addressable by direct excitation with
one photon as a consequence of the selection rules. Second, the effective Rabi frequency
given by Ωeff = ΩpΩc

2∆c
can be extremely large by the right choice of parameters.

Finite decoherence γr plays a similar role in the off-resonant case as in the resonant
EIT case discussed before. While before it resulted in imperfect transmission, in the
off-resonant case the absorption probability decreases and the line broadens. For the
parameters chosen in Fig. 4.4, Ωc = 2π· 8 MHz and γr = 2π· 0.4 MHz the absorption
is already reduced roughly by a factor 2. If still strong absorption is required, this can
be achieved by higher Ωc at the cost of linewidth. For given parameters OD, Ωc and γr
the effective optical density attenuating the probe beam at ∆p can be estimated by [51]

ODRaman =
Ω2
c

4∆2
c

γe
γr + Γr

OD. (4.30)

The difference in line positions for the Rabi frequencies Ωc = 2π· 8 MHz and Ωc =
2π· 16 MHz showing up in Fig. 4.4 is a consequence of the ac-Stark shift of the Rydberg
level due to the control light. For efficient Rydberg excitation this ac-Stark shift has to
be accounted for in the probe detuning. Thus, resonant two photon excitation of the
Rydberg level is achieved for ∆c at the probe detuning

∆p = ∆c +
Ω2
c

4∆c
. (4.31)

However, also the regime ∆p = ∆c is of interest for some applications, see sec. (4.5.2).
Reason for the ac-Stark shift is the coupling of |e〉 and |r〉 by the control light. This does
not only lead to a shift of these states but also to some admixing of the intermediate
state to the Rydberg state. This admixing reduces the lifetime of the Rydberg state as
the lifetime of the intermediate state is short. The strength of the admixing depends on
Ωc and ∆c such that the decay rate of the Rydberg-level is given by

γRaman = Γe

(
Ω

2∆c

)2
. (4.32)

When long lifetimes of the Rydberg states are required, it is therefore necessary to work
at large intermediate state detunings or if possible switch the control light off after the
excitation. The reduction of the Rydberg lifetime due to admixing of the intermediate
level is the main disadvantage of this two-photon excitation scheme compared to one-
photon excitation with UV light.
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Figure 4.4: Off-resonant Rydberg EIT(a) Spectrum of the probe light for OD = 30 and
∆c = 2π· 100 MHz. In the off resonant case the probe field is strongly attenuated
close to ∆p = ∆c. Strength and width of the absorption are determined by Ωc and
γr. (b) The population ρgg of the Rydberg state shows a peak at the position of the
dip in transmission of the probe field. This means that probe photons are absorbed
and converted into Rydberg excitations.

4.5 rydberg mediated photon nonlinearities

The equations derived In this chapter up to this point account only for the atom-light
interaction, but not the interaction between atoms. On the other hand the introduction
to interacting Rydberg atoms in chapter 3 revealed strong interactions between a pair of
Rydberg atoms on a micro-meter length scale. Inclusion of these giant interaction effects
between pairs of Rydberg atoms to the atom-light coupling leads to strong excitation
blockade [25] investigated in numerous theoretical and experimental publications.
The principle of the excitation blockade is illustrated in Fig. 4.5 for two atoms interact-

ing via van-der-Waals interaction when excited to the Rydberg state. The frequencies of
the probe and control field are chosen such that they are on resonance with the |g〉 ↔ |e〉
transition of atom 1. This allows transferring the population from |g〉 to |r〉. Atom 2,
which is displaced from atom 1 by a distance r, is addressed with the same laser field.
For large distances where the Rydberg interaction is negligible atom 2 is also resonant
with the laser fields such that excitation to |r〉 is possible as well. For shorter distances
however, the energy-shift V(r) has to be taken into account for the doubly excited state.
Due to energy conservation, excitation of the doubly excited state can only occur when
the energy shift V(r) is smaller than the excitation linewidth of the Rydberg state |r〉.
The region were the excitation of a pair of Rydberg atoms is energetically forbidden is
referred to as blockade region. For isotropic interactions this results in a sphere with ra-
dius rb (blockade radius) which is defined as the distance where V (r) and the excitation
linewidth intersect.
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atom 1 atom 2

Figure 4.5: Rydberg excitation blockade For the expla-
nation of the Rydberg excitation blockade two
atoms separated by a distance r are considered.
Via a two photon excitation the first atom is ex-
cited from the ground state |g〉 to the Rydberg
state |r〉. For the excitation of a second atom the
spatially dependent shift V (r) of the Rydberg-
Rydberg pair state has to be taken into account.
Thus excitation of the double excited state is
energetically forbidden when V (r) exceeds the
excitation linewidth.

A more profound treatment of the excitation of doubly excited Rydberg states can
be found in sec. (6.2) in a more general context not restricted to the special case of
van-der-Waals interaction.

Of course the excitation blockade influences both the excitation statistics of the atoms
as well as the transmission properties of the light through an atomic ensemble. While the
former is primarily investigated in the context of the realization of atomic qubits [21, 22],
the latter gives rise to huge optical nonlinearities enabling the creation of non-classical
states of light or toolboxes for all optical quantum computing.

4.5.1 Dissipative Rydberg EIT regime

Very efficient interactions between individual photons occur when EIT and interacting
Rydberg atoms are brought together. As introduced in sec. (4.3.2) the photon pulse slowly
travelling through the medium under EIT can be considered as a quasi-particle with
partly photonic character and partly atomic character of a Rydberg atom. Two polaritons
can however only propagate through the cloud at the same time when the distance
between them is larger than the blockade radius rb. Accounting for the EIT linewidth
in eq. (4.23) and assuming van-der-Waals type interaction of the form V (r) = C6

r6 the
blockade radius at given Ωc is

rb =
6

√√√√C6Γe
√
OD

Ω2
c

. (4.33)

When two polaritons come closer than this distance, the level shift can be considered as
a change of the resonance condition for the control light. This means the EIT condition
∆c = ∆p = 0 is not fulfilled anymore for two polaritons which are too close. Under
the assumption that the transversal size of the system is smaller than rb this renders
the three-level system to an effective two-level system obeying strong scattering at the
intermediate state with given OD, i.e. one of the polaritons gets lost due to scattering
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at the intermediate state [36]. The result is a strong optical nonlinearity of the outgoing
photon flux and anti-bunching in the temporal intensity correlation of the output [38].
Based on some simplifying assumptions both the nonlinear transmission and the pho-

ton statistics can be simulated by means of numerical Monte-Carlo simulations. The
assumptions made for the results shown in Fig. 4.6 are a tiny medium which is block-
aded by a single Rydberg atom, one-dimensionality and perfect blockade. The actual
simulations are very similar to the ones described in chapter 7. First, a input pulse with
a certain amount of time bins and Poissonian photon statistics is generated. Then, after
a fist photon has been transmitted, all other entries in the time bins closer than a certain
defined delay time are deleted (photons are scattered). After one delay time, the process
of transmission and scattering is restarted. Fig. 4.6 (a) shows the input-photon-rate-
dependent nonlinear transmission of this simulation for different delay times τ .
Fig. 4.6 (b) shows the cross-correlation function g2(τ ) obtained for pulses at a photon

rate of rin = 2.5 µs−1 and a delay time of τdelay = 0.2 µs. While the reference signal
reveals g2(τ ) = 1 over the whole time range, the simulated transmitted signal shows
the characteristic anti-bunching feature caused by the Rydberg interaction, occurring on
the time given by the delay in the medium. In the simulation for the red data curve a
second channel was introduced allowing the propagation of two polaritons side by side.
This reduces the contrast of the anti bunching feature as the two different channels are
not correlated. To measure non-classical light it is therefore important to implement an
experiment with small transversal extend.
Comparison with experimental data [38] shows, that the assumptions made in the

simulations discussed above are quite crude. Especially, when investigating the temporal
width of the anti-bunching feature in the cross-correlation of the transmitted light, it
turns out that this width is always on the timescale of the delay time inside the medium.
This is very surprising, as for a medium longer than the blockade radius one would
naively expect antibunching only for the time a polariton travels through the blockade
region, given by 2rb/vg. More advanced full calculations in which a two photon wave
function is numerically propagated, taking into account the polariton wave equations,
reproduce the experimental results correctly [43, 96].

4.5.2 Rydberg mediated photon-photon phase shift

Besides the dissipative EIT regime, where the Rydberg interaction leads to a blockade
of the atomic medium by a single polariton for further incoming photons, the system
described above can also be tuned to a dispersive regime. In this regime, the Rydberg
mediated interaction does not lead to a saturation of transmission, but to a phase shift
conditioned on the presence of a second photon [42, 41]. The principle is illustrated in
Fig. 4.7. To work in the dispersive regime, the detuning of the control field is chosen
to be offresonant from the |e〉 ↔ |r〉 transition by a few times the intermediate state
decay rate, in this example it is chosen to be ∆c = 4Γe. This results in additional
absorption feature at ∆p ≈ ∆c (blue line in Fig. 4.7 (a)). When the probe detuning
is set to ∆p = 2π· 24.7 MHz, as denoted by the dashed vertical line, the two-level
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Figure 4.6: Dissipative Rydberg EIT nonlinearities (a) Simulation of the interaction
mediated nonlinear transmission of photons through an atomic medium. In a fully
blockaded medium, the transmission saturates at a input rate approximately given
by the inverse of the pulse delay time inside the medium (τ−1

delay). (b) Simulated g2
cross-correlation function for a delay time τdelay = 0.2 µs. The EIT photon filtering
of an input pulse with Poissonian statistics results in a train of photons coming
out of the medium photon by photon. This leads to an antibunching effect on the
timescale of the delay time inside the medium.

system which a second photon encounters in the presence of interaction has the same
transmission. Unlike for the dissipative regime, the interaction has no influence on the
transmission here. Interestingly, at this frequency the phase picked up in the two different
cases can be, depending on ∆c and OD, quite different. For the parameters presented in
Fig. 4.7 the phase different is

∆φ = φinteraction − φno interaction = 1.81 rad− (−1.81 rad) = 3.62 rad. (4.34)

This large phase difference suggests Rydberg EIT in the dispersive regime to be an ideal
candidate for the implementation of a controlled two qubit phase gate (cPhase gate). The
difficulty for this step is to realize both a control and a target qubit, which in principle
can be done by using different light polarizations (e.g. σ+ and σ−).
As discussed in chapter 5 it is experimentally feasible to couple only one light polariza-

tion to a Rydberg state. This allows coupling a target qubit |0〉 to a Rydberg state, while
a second target qubit |1〉 is uncoupled. Storing a gate photon as a Rydberg excitation in
the atomic ensemble before sending the target photon will result in the operations

|0〉 → |0〉
|1〉 → eiφ|1〉.

By reading out the gate photon after the operation, it is possible to entangle gate and tar-
get photons and in principle realize high fidelity Rydberg based photonic quantum gates.
Experimental dephasing mechanisms which impose a fundamental limit are discussed in
sec. (5.3.2).
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Figure 4.7: Rydberg interaction mediated phase shift (a) Transmission spectrum
through an atomic sample with OD = 30 with applied control field with Ωc =
2π· 15 MHz (blue) line and without control field (red line). The detuning of the
control field is chosen to be ∆c = 4Γe. For these parameters, the two transmission
lines intersect at ∆p = 2π· 24.7 MHz, yielding same transmission for the two dif-
ferent cases. (b) The phase difference at the crossing point of the transmission lines
is ∆φ = 3.62 rad for this set of parameters, however it is tunable by a different
choice of ∆c and OD.
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5 A system for interacting single
photons

In chapters 3 and 4 the theoretical foundations for the promising application of Rydberg-
mediated photon-photon interactions were discussed. Building on that, this chapter
briefly summarizes both the experimental setup and the measurement procedures to
probe the large optical nonlinearities. For this purpose, first the vacuum chamber for the
preparation of a dense sample of ultra cold 87Rb atoms by means of all optical trapping
and cooling is introduced. Second, the manipulation techniques to address high lying
Rydberg states are discussed, including the detailed excitations and detection schemes
of photons and Rydberg atoms. Finally, a few basic results are shown to demonstrate the
capability of this apparatus to perform applications in the field of quantum nonlinear
optics. The description of the setup reduced to the minimally required information to
understand the experiments in chapters 6 and 7. Especially many technical aspects can
be found additionally found in the thesis of my PhD co-worker Hannes Gorniaczyk [97].

5.1 requirements and setup overview

The properties explained in chapter 3 and 4 set the conditions a setup designed to inves-
tigate Rydberg mediated photon nonlinearities in free-space without using a confining
hollow core fiber or cavity has to fulfill. These are: a high optical depth on the transition
|g〉 ↔ |e〉, narrow excitation linewidths to achieve large blockade radii, a strongly focused
probe beam to reach a one dimensional system size, high stability of electric fields and
low temperatures of the atomic ensemble to obtain small dephasing rates.
One possible approach could be the usage of a vapour cell at room temperature [98,

99]. However, one limitation in such a system is the huge excitation linewidth due to
Doppler/transit time broadening and motional dephasing caused by the high kinetic
energy of the Rydberg atoms. For this reason interaction effects on the single photon
level could not been shown so far in hot vapor experiments.
A contrary method is the application of the EIT technique onto a Bose-Einstein con-

densate, offering low temperatures and high densities. Yet, in a BEC it turns out that the
extremely high atomic densities lead to inhomogeneous line broadening due to ground
state atoms interacting with the Rydberg electron [100, 19].
Cold thermal atoms at densities around 1012 cm−3 are a good compromise between

these two extreme cases. As of today, construction of the required vacuum apparatuses
is state of the art. A layout drawing of the apparatus constructed during the scope
of the thesis can be found in A.1. It consists of a vacuum chamber made of stainless
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steel, to which a large glass cell providing excellent optical access from all directions is
attached. An ion getter pump connected to the chamber sustains a constant pressure
of ≈ 10−10 mbar. The pressure is mainly limited by background pressure of Rubidium
atoms, which are released from dispensers driven with a current of 2 A − 4 A. From
the background pressure, atoms are directly loaded into a magneto-optical trap (MOT),
which is located in the center of the glass cell. For this purpose, six laser beams with
a diameter of 2.54 cm are passing through the chamber, cooling 87Rb atoms on the
|5S1/2,F = 2〉 ↔ |5P3/2,F = 3〉 transition. After a loading time of ≈ 1 s around 5 · 106

are captured in the MOT and subsequently transferred into the optical dipole trap where
they are further cooled and the shape of the atomic medium is arranged. Both the setup
of the optical dipole trap and further cooling techniques are described in more detail in
sec. (5.2.1) and sec. (5.2.2).
After the atomic sample has been produced following the procedure described above,

the experiments are performed. For this purpose, the optical setup illustrated in Fig. 5.1
is built around the glass chamber. Each two 780 nm probe beams and 480 nm control
beams are overlapped with the center of the atomic medium. To guarantee the one-
dimensionality of the system for polariton propagation at Rydberg states with high
principal quantum number, both probe beams are focused down to a beam waist of
wprobe = 6.2 µm. This is attained by two achromatic lenses with a focus length of
50 mm outside the glass chamber. In principle, an even smaller waist at the position of
the atoms is desirable. This would allow working at lower principal quantum numbers
and thus being less sensitive to fluctuations in the electric field. However, it requires
either optics with a larger diameter or a lens with a shorter focal length inside the glass
cell. The former is not possible as there are some spatial constraints mainly determined
by the setup of the dipole trap (see sec. 5.2.1), the latter might pose a risk to the temporal
stability of electric fields due to charges on the surface.
The control beams are overlapped with the probe beams using dichroic mirrors, but

focused less strongly. A beam waist of wcontrol = 14 µm guarantees a quite homogeneous
Rabi frequency Ωc over the full width of the probe beam.
For the excitation of a single spin state a well-defined polarization of the excitation

lasers is required. A detailed excitation scheme illustrating the polarizations to address
Rydberg S - and D-states is provided in the thesis of Hannes Gorniaczyk [97]. As all
laser used for the Rydberg excitation are guided to the experiment chamber using optical
single mode fibers to filter the spatial mode, the polarizations are first filtered again using
polarizing beamsplitter cubes (PBS). Subsequently, the light is send through quarter- and
half-waveplates to obtain the desired polarization. As for the Rydberg excitation only
σ+ light for the lower transition and σ+/σ− for the upper transition are required, in
principle only quarter-waveplates are necessary. Yet, the combination of both waveplates
allows to compensate for birefringent optics in the setup, like e.g. the glass cell. For best
performance the axis of all waveplates has to be aligned on the atomic spectrum.
After passing through the glass cell, both probe beams are collected again with non-

polarization-maintaining single mode fibers. In a Hanbury Brown and Twiss setup, each
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Figure 5.1: Optical setup for probing Rydberg mediated optical nonlinearities Sketch
of the optical setup to measure the optical nonlinearities caused by the Rydberg-
Rydberg interaction. Two 780 nm laser beams (Probe 1 + 2) are aligned to the
center of the ultra cold atomic cloud with a waist of wprobe = 6.2 µm. The light
transmitted through the vacuum chamber is collected by fiber coupled SPCM mod-
ules. For coupling to a Rydberg state, the probe beams are overlapped with two
independent 480 nm control beams with a waist wcontrol = 14 µm. The polarization
in each beam is adjusted by a pair of λ/2- and λ/4- waveplates.

beam is afterwards split and detected on two single photon counter modules 1,2 (SPCM).
This techniques allows to measure temporal correlation functions of the transmitted light
on timescales shorter than the dead time of the SPCM modules.
Both preparation of the atomic sample and probing of the nonlinearities require fast

switching of laser fields, voltages and currents on the timescale of 10 ns. To this end,
components like acousto-optical modulators (AOM) or power supplies for coils are con-
trolled by a computer aided control system3 featuring 32 digital and 16 analog channels.
These channels can be programmed via a convenient graphical user interface (GUI), pro-
grammed by Michael Schlagmüller during his Ph.D. thesis [101]. This system is limited
to a time resolution of 20 µs, which is fast enough for the preparation of the ultra cold
atoms. On top, for driving fast pulses of the Rydberg lasers and gating of the SPCMs,
a 24 channel digital pulse generator with a time resolution of 2 ns manufactured by
Swabian Instruments is used4.

For data acquisition, the TTL pulses of the photon counters indicating the detection
of a photon, are tracked by a fast time tagger with a maximum time resolution of 20 ps5
and saved on a data storage computer for evaluation.

1Laser Components, Count-250C-FC
2Excilitas, SPCM-AQRH-23 FC
3Jäger Messtechnik, Adwin II pro
4we used a first prototype, now available as Pulse Streamer 8/2
5Swabian Instruments, Time Tagger 20
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Typical measurements to extract parameters of the setup are shown in Fig. 5.2. The
optical density of the atomic cloud is determined by measuring a spectrum of the probe
field across the resonance of the |g〉 ↔ |e〉 transition in absence of the control field.
Fitting eq. (4.20) to the data yields the resonant optical density. For the data pre-
sented in subfigure (a) the extracted value is OD = 108. Turning on the control field
on resonance with the |e〉 ↔ |r〉 transitions renders the medium for the probe beam
from opaque to transparent. By a fit of the transmission based on the susceptibility in
eq. (4.22), both the control field Rabi frequency Ωc = 2π· 11.4 MHz and the dephas-
ing rate γr = 2π· 103 kHz of the Rydberg state can be extracted from this measurement.

Fig. 5.2 (b) presents a measurement of pulse arrival times at the photon detectors.
In comparison to a reference pulse sent through the glass cell without medium, the
maximum of the pulse transmitted through the atomic cloud on EIT resonance is delayed
by τdelay = 0.42 µs. This value, obtained by fitting a Gaussian to the measured photon
pulses, is in good agreement with the value τcalc = 0.40 µs predicted by eq. (4.27) for
the experimental parameters OD = 8.5 and Ωc = 2π· 4.5 MHz.
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Figure 5.2: Transmission measurements (a) Frequency scan of the probe laser across the
|g〉 ↔ |e〉 resonance. In the absence of the control field the optical density on
resonance is OD = 108. In the presence of a control field resonant to the |e〉 ↔ |r〉
transition EIT occurs. (b) Measurement of the pulse delay on EIT resonance for
OD = 8.5 and Ωc = 2π· 4.5 MHz. The reduction of the group velocity due to the
steep dispersion on EIT resonance results in a delay of τdelay = 0.42 µs of the signal
pulse compared to the reference pulse.

5.1.1 Laser system

For preparation of the ultra-cold atomic ensemble and probing the nonlinearities different
lasers are required. Depending on the exact transition, the linewidth of the laser driving
the transition has to be on the order of a few kilohertz (for Rydberg excitations) to a
few megahertz (ground state transitions). Apart from the laser light at 480 nm coupling
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to the Rydberg state, all wavelengths required in the experiment for the preparation and
manipulation of ultra cold 87Rb atoms are sketched in Fig. 5.3. The involved frequencies
differ mainly by the hyperfine splitting of the ground state 5S1/2 which is 6.835 GHz. In
comparison, the splitting of the four hyperfine states of the first excited state 5P3/2 is
comparatively small.
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F=1 F=2 F=0 F=1 F=2 F=3

Energy

MOT Cooler / Probe field 780.246 nm
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Figure 5.3: Laser wavelengths required for preparation of cold 87Rb atoms Prepara-
tion of a cold atomic ensemble of 87Rb requires a variety of wavelengths to address
the different hyperfine structure levels F of both the ground state 5S1/2 and the
first excited state 5P3/2.

For high experimental flexibility the different wavelengths are realized using six exter-
nal cavity diode lasers which are set up on an additional table. Light is transferred to the
main chamber with optical fibers, also yielding the advantage of a clean Gaussian mode.
One of these lasers is stabilized onto an optical cavity with a high finesse of F = 15000 by
means of the Pound-Drever-Hall technique. This allows to narrow the frequency linewidth
of this laser to approximately 5 kHz [102]. Due to this small linewidth and extremely
good longtime stability, this laser serves as a frequency reference for all other lasers. For
this purpose, of each laser a small fraction of light is overlapped with light of the mas-
ter laser and focussed onto a fast ac-coupled photo diode6 with a electronic bandwidth
exceeding 8 GHz. These photodiodes allow to measure the beating pattern oscillating
with the frequency difference of the two lasers. Fast feedback electronics using self-build
PID controllers [101] allows to stabilize this beat pattern to a desired frequency provided
by a stable rf-source7. Generation of the error signal which is required as input of the
PID is on the one hand done by using delay line detectors [103] resulting in a linewidth
of the beat pattern on the order of 100 kHz. This is stable enough for all applications
involving only ground state transitions. On the other hand Rydberg transitions can be

6Hamamatsu G4176-03
7Typically the usage of direct digital synthesizers (DDS) is suggested
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even more narrow. To be not limited by the laser linewidth resulting in a decoherence
rate γr, the lasers used for Rydberg excitation are stabilized to the reference laser using
a phase locked loop [104]. With this method, a linewidth of less than one kilohertz is
achieved.

For fast switching of the laser light and pulses with arbitrary duration, shape and
intensity, in each laser beam guided to the experiment an acousto-optical modulator
(AOM) is used. Additional mechanical shutters allows to completely block leakage light
when the AOMs are switched off.

5.1.2 Electric Field Control/ Rydberg Ionization

The calculation of dc-Stark shifts of Rydberg levels in sec. (3.2.1) has shown, that due to
their large polarizability high lying Rydberg atoms are extremely sensitive to tiniest elec-
tric fields. Experimentally, this has two consequences. First, the position of the Rydberg
line can shift over time. This makes measurements requiring a lot of statistics very time
consuming as the position of the line has to be remeasured after short time intervals.
Second, inhomogeneous electric fields result in an effective linebroadening affecting the
strength of the interaction. To control both absolute field, direction of an applied electric
field and electric field gradients, a steel construction composed of eight independent field
plates is mounted inside the glass cell. The construction of this electric field control was
part of the Master thesis of Johannes Schmidt [105], a scheme of the construction and
how voltages are applied to generate a field in a certain direction is shown in A.2. Can-
celling the electric field in all three direction of the laboratory coordinate system allows
to reach narrow excitation spectra for high principal quantum numbers up to n = 150
with typical linewidths smaller than 1 MHz. Typically the day to day stability of the
electric fields is on the order ∆E ≈ 2 mV/(cm).
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Figure 5.4: Electric field control and ion detection (a) Averaged signal of the MCP
measured on a fast oscilloscope. (b) Stark map taken by varying the electric field.
Such measurements are used in the experiment to calibrate and cancel electric fields.
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At the same time, the in-vacuum electric field control also allows for another detection
scheme of Rydberg (besides the optical detection via the probe light). Resulting from the
weak binding energy of the Rydberg electron, a strong electric field pulse can be utilized
to tear the Rydberg electron off the ionic core [106]. Subsequent detection of either
Rydberg electron or ionic core with a ion-detector allows reconstructing the number of
excited Rydberg atoms. To this end, to two of the electrodes a voltage up to 500 V can
be applied which is sufficient to ionize Rydberg states with n > 40.
Fig. 5.4 (a) shows a typical trace of an ion count on the MCP measured on a fast

oscilloscope. The good signal to noise ratio and the low ringing of the signal allow mea-
suring this counts digitally on the same time-tagger as used for counting the clicks of
single photon counters. In Fig. 5.4 (b) the ion signal of a Stark map measurement is pre-
sented. For each value of the electric field, the position of the Rydberg line is measured
by scanning detuning of the probe laser over the resonance. From the electric field offset
of the measured parabola stray electric fields can be determined and compensated.

5.2 preparation of a dense atomic sample with tunable size

In section 5.1 the procedure of capturing and cooling atoms is already briefly summarized.
Taking for granted, that the atoms have already been loaded into the MOT from the
Rubidium background gas in the chamber, this section introduces the implementation of
the optical dipole trap in the experiment and how it enables shaping the geometry of the
atomic medium. Additionally, with the technique of Raman sideband cooling a method
to efficiently cool atoms at a very low loss rate is introduced.

5.2.1 Optical Dipole trap / dimple

Trapping of atoms on a timescale of a few seconds is one of nowadays standard techniques
in state of the art cold atom experiments. There are mainly two different approaches to
realize this. On the one hand, magnetic traps offer a high robustness due to their me-
chanical stability and convenient cooling mechanisms by forced evaporation with radio-
or microwave fields [107, 28]. With regard to Rydberg experiments, magnetic traps have
the advantage that all low field seeking spin states of both ground state and Rydberg
state can be trapped at the same time. Using optical dipole traps (ODT) [108, 109,
110] this requires to work at a so-called magical wavelength [111, 112], but then even all
magnetic spin states can be trapped. However, although optical traps might lack some
mechanical stability, their high flexibility concerning different trapping potentials gives
a huge advantage over magnetic traps. Both depth and shape of the traps can be simply
varied by the selection of beam shapes or laser intensities. As different experiments, as
discussed in chapter 6 and 7, impose different needs on the shape of the atomic medium,
it is evident that an ODT is the better choice. The geometry of the ODT used for the
experiments in this thesis is illustrated in Fig. 5.5 (a). After the atoms have been loaded
into the MOT, they are transferred into the crossed ODT consisting of two laser beams
at a wavelength of λODT = 1064 nm crossing under an angle ϑ. Loaded into this trap,
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Figure 5.5: Setup of the crossed optical dipole trap (a) Configuration of crossed optical
dipole trap at λODT = 1064 nm and dimple at λdimple = 855 nm. (b) Calculated
optical depth in the probe beam for an atomic sample trapped in the crossed ODT
for different crossing angles ϑ. As the value of the total OD depends on the atom
number in the trap, it is normalized to its maximum.

the atoms are subsequently cooled down to temperatures of T ≈ 5 µK by means of forced
evaporative cooling and Raman sideband cooling (sec. (5.2.2). Additionally, depending
on the experiment in mind, the length L of the atomic cloud along the probe beam,
can be altered using an additional dimple beam at λdimple = 855 nm. In the following,
properties as the landscape of the trapping potential or trap frequencies are calculated.
The principle of optical dipole traps is based on the ac-Stark shift imposed onto atoms

[113] by a light field. The underlying mechanism stems from the atom-light coupling
discussed in sec. 4.2, inducing a polarizability in an atom. While before the back action
of the induced dipole moment onto the electric field was of interest, for all optical trapping
one can assume that the number of photons is so much larger than the amount of atoms,
such that these effects are negligible.
Treating the atom as a polarizable medium in a semiclassical approach, the induced

dipole moment is given by p(t) = αE(t) = ε0χ
N E(t), where α(t) is the polarizability of

the atom. The energy in the laser field is thus given by

Udip(r) = −
1
2〈α(t)E(, r, t)〉 = −1

2 Re(α)I(r), (5.1)

where I(r) = 1
2ε0c|E(r)|

2 is the intensity of the trapping laser. In the context of optical
dipole traps the polarizability α is often calculated using the Lorentz model for a damped
harmonic oscillator. However, the solution calculated in sec. (4.2) considering only two
coupled levels leads to exactly the same result. Eq. (5.1) then takes the form

Udip(r) = −
3π
2ω3

0
· Γ
ω0 − ω

I(r), (5.2)
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where ω0 is the transition frequency of the atom and ω the frequency of the trapping
laser. This potential results in a frequency and intensity dependent dipole-force F (r) =
−∇U(r) on the atoms, which is

Fdip(r) =
3π
2ω3

0
· Γ
ω0 − ω

∇I(r). (5.3)

From eq. (5.3) it becomes apparent, that the detuning ∆ = ω0 − ω plays a crucial
role for the sign of the dipole-force. On the one hand for red detuning, when ∆ < 0,
the dipole-force points towards the position of highest intensity. On the other hand a
blue detuned laser field, ∆ > 0, results in a force pointing away from the position of
highest light intensity. While traps for the latter case are much more difficult to realize
experimentally, these traps offer the advantage that the trap does hardly influence the
energy levels of inclosed atoms. On top, eq. (5.3) reveals that the dipole-force can be
dramatically increased by working at small detunings ∆. However, since the scattering
rate scales with

(
1

ω0−ω

)2
I(r) [113] this results in stronger heating. For this reason it is

better to increase the dipole-force by using higher intensities of the laser field if affordable.
In a real atoms multiple levels are present, all contributing to the potential energy of

a considered state. To take these into account, eq. (5.2) transforms to a sum over the
contributions of different levels

Udip,total(r) = −
3π
2 I(r)

∑
i

1
ω3

0,i
· Γ0,i
ω0,i − ω

. (5.4)

Here, ω0,i and Γi are the energies and decay rates of the different included levels. The
relevance of different states in the sum of eq. 5.4 depends strongly on both the scattering
cross section of each level and the detuning of the ODT with respect to the particu-
lar state. For example, in Rubidium it is sufficient to include only D18- and D29-lines
when calculating the trapping potential of the ground state in a λODT = 1070 nm trap.
These transitions share both the smallest detuning and strongest coupling strength in Rb.

The total trapping potential generated by multiple lasers can be calculated by sum-
ming over the potentials of each individual laser. This allows modeling the trapping
potential realized by the crossed ODT and the additional dimple in the experiment. As
in the setup only Gaussian laser beams are used, the respective intensities I(r) can be
parameterized in the {x, y,u} coordinate using a few parameters only, namely the total
power Ptrap of each beam, the beam waist in the focus wtrap and the pointing direction of
the respective beam. Initially, from such calculations the angle ϑ enclosed by the beams
of the crossed ODT was optimized for the highest OD in the probe beam provided by
a given number of atoms. The dependence of resulting OD for the probe beam on the
crossing angle ϑ is shown in Fig. 5.5 (b). Due to spatial constraints arising from the
lenses focusing the probe beam a value of ϑ = 31◦ was realized in the experiment, which

8|5S1/2〉 ↔ |5P1/2〉
9|5S1/2〉 ↔ |5P3/2〉
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is close to the ideal value occurring at 15◦ < ϑ < 30◦.

Cuts through z = 0 of the according to eq. (5.4 calculated potentials of the geometry
illustrated in Fig. 5.5 (a) are shown in Fig. 5.6 (a)+(b). The depth of the potentials
is encoded in the colormap in units of MHz. In subfigure (a) the potential resulting
from the crossed ODT is calculated for the experimental parameters ϑ = 31◦, PODT =
0.6 W and wODT = 37 µm. With these parameters, the two laser beams result in an
elongated potential along the y-direction, i.e. the direction along which the probe beam
is propagating. Loading a large number of atoms in this potential results in a high optical
depth for the probe beam.
The effect of the dimple beam becomes clear from Fig. 5.6 (b). The parameters for this

calculations are again adapted to the experimental realization. While waist and angle of
the crossed trap are the same compared to the calculations in subfigure (a), the power
is changed to PODT = 0.3 W. The parameters of the dimple are Pdimple = 200 mW,
wdimple,y = 18 µm and wdimple,z = 44 µm. The different waists of the dimple in y-
and z-direction are chosen to not decrease the size of the atomic cloud in the direction
perpendicular to the probe beam which would result in weaker absorption. While the
depth of the potential at these parameters remains approximately the same, the length
of the potential along the z-direction changes dramatically.
In the vicinity of the trap center, the trapping potentials can be well approximated by

a harmonic function Uharmonic(x, y, z) = 1
2mω

2
{x,y,z}, where ω{x,y,z} are the trap frequen-

cies. Plugging the Boltzman distribution p(r) = exp(−U(r)/kBT ) into this harmonic
potential allows to calculate a density profile for a given number of atoms at a mean
temperature of T .
For the crossed ODT with the parameters introduced before, the trap frequencies are

ωr = 2π· 690 Hz and ωy = 2π· 190 Hz, determined by fitting the harmonic approxima-
tion to the full calculation of the potential. At a atom number of N = 25000 atoms and
a temperature of 5 µK typically achieved in this configuration, this results in cloud di-
mensions of σr = 7.1 µm and σy = 25.9 µm. sigmay ad sigmar, respectively, are defined
as 1/e-width of the Gaussian density distribution along and transverse the direction of
the probe beam propagation. These calculated numbers are in good agreement with the
cloud dimensions measured by absorption imaging, shown in Fig. 5.6 (c).
As discussed before, usage of the additional dimple beam modifies the trapping po-

tential in y-direction. This mainly results in an increase of the trap-frequencies in this
direction. For the potential shown in Fig. 5.6 (b), the trap frequencies are determined to
be ωy = 2π· 1400 Hz and ωr = 2π· 600 Hz. In this configuration typically N = 20000
atoms can be loaded at a temperature of T = 8 µK (this increase is due to stronger heat-
ing in the 855 nm light). The resulting dimensions are σr = 11.0 µm and σy = 4.8 µm.
These values are in less good agreement with the atomic densities obtained by absorption
images from the experiment, shown in Fig. 5.6 (d). Main reason is that the absorption
imaging optics in the experiment are not designed to resolve such small structures. This
results for example in the brighter spot in the center of the dense region as a consequence
of diffraction at the dense medium.
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Figure 5.6: Trapping atom in an optical dipole trap (a) Calculated trapping potential
of the crossed optical dipole trap at 1070 nm operated at a power of 0.6 W. (b)
Calculated trapping potential of the crossed optical dipole trap superimposed with
the dimple beam at 855 nm. The length of the atomic medium along y can be
dramatically reduced by the dimple beam to fit only a single Rydberg atom in.
(c)+(d) Atomic densities measured by absorption imaging of atoms trapped in the
potentials shown in (a)+(b). As expected from the calculated potentials, the crossed
ODT leads to a elongated cigar shaped atomic sample, while the additional dimple
results in a reduced length in y-direction.

5.2.2 Raman sideband cooling

Crucial for low dephasing rates and long experiment time in a single MOT cycle is a
low temperature of the atomic ensemble. As an example, a lower temperature yields a
narrower Rydberg excitation linewidth as the effect of Doppler broadening scales with
the square root of the temperature [64]. Hence, the mediated Rydberg interactions be-
come stronger due to the dependence of the blockade radius on the excitation linewidth.
Second, the ballistic expansion of the atomic ensemble when the trapping potential is
switched off occurs on a longer timescale when the temperature is reduced. This allows
to recapture the atoms after a experiment time of about 20 µs in the optical trap. Es-
pecially for the measurements of photon correlation functions requiring a large amount
of statistics, such a recapture procedure allows to decrease the required experiment time
tremendously.
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Using the optical dipole trap the atoms can in principle be efficiently cooled by forced
evaporation [114, 115]. In doing so, the depth of the trapping potential is decreased grad-
ually over time, such that the hottest atoms of the Boltzmann distribution can escape
the trap. As a consequence, both the mean temperature and the total atom number of
the ensemble is reduced. In order to achieve strong nonlinearities, besides low tempera-
tures also a high OD is important, thus a cooling method which is not based on loss of
atoms is desired. One among many different options is Raman sideband cooling (RSC),
implemented in the experiment during the Bachelor thesis of Christoph Braun [116]

The principle of Raman sideband cooling originates from cooling techniques developed
for cold ions trapped in electric harmonic oscillator potentials [117] like e.g. a Paul trap,
but can be applied to cold atoms as well [118]. While there are even for 87Rb different
approaches, Fig. 5.7 (a) represents the scheme implemented for the experiments within
this thesis. After loading of the ODT, atoms are first transferred to the |5S1/2,F = 1〉
state. Subsequently a deep optical lattice is ramped up, where each of the lattice sites
can be modeled by a harmonic oscillator potential. When the lattice is steep enough, the
equally spaced levels n of the harmonic oscillator potential are well separated in energy.
These levels represent the quantized kinetic energy of the atoms. Since the atoms have a
finite temperature at the beginning of the cooling process, the harmonic oscillator levels
are distributed accordingly. The lowest temperature of the sample is reached when all
atoms are in the ground state of the harmonic oscillator potential. Goal of the cooling
mechanism is thus to gather all atoms in this state.
By applying a magnetic field the degeneracy of the three spin state mF = −1, 0, 1 of

the F = 1 hyperfine state can be lifted due to the Zeeman effect. To start the cooling
process the magnetic field is chosen such that the relative Zeeman shift of the different
spin states equals the energy spacing ∆En of the harmonic oscillator levels of the lattice.
As a consequence different oscillator levels assigned to different spin states are tuned to
degeneracy as illustrated in the sketch. As the sample is not spin polarized yet, atoms
are distributed over all different possible states. Therefore each atom can be described
by its spin state mF and the motional quantum number n, in the following expressed by
|mF ,n〉. Two-Photon Raman transitions driven by the lattice light result in a transfer of
atoms between the degenerate harmonic oscillator levels. For example an atom starting
in |1, 8〉 can be transferred to | − 1, 6〉, i.e. the atom is loosing two quanta of kinetic
energy and changes its spin state by ∆mF = 2. To achieve further cooling the atom has
to be transferred back to mF = 1 to start over the same process. This is not possible
with Raman transitions as it would cost the same amount of energy and thus not result
in a cooling. Instead the atom is pumped to |5P3/2,F = 0,mF = 0〉 by an additional
σ+ polarized "polarizer" which is on resonance with the |5S1/2,F = 1〉 ↔ |5P3/2,F = 0〉
transition. From the excited state the atom can decay back to |F = 1,mF = 1〉 or
|F = 1,mF = 0〉. Subsequently, Raman transitions changing the spin state to mF = −1
can further reduce the kinetic energy. Yet, a net cooling can only occur if the optical
pumping process with the polarizer does not result in a strong change of the kinetic quan-
tum number n. This condition is met in the Lamb-Dicke regime, which is entered when
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the recoil energy Er = h̄2k2/(2m) an atom picks up during the absorption of a photon
is smaller than the spacing ∆En of the harmonic oscillator levels [119]. Then transitions
changing the motional quantum number n by more than one are strongly suppressed.
Due to the choice of σ+ polarization of the polarizer, |1, 1〉 is a dark state from which
no optical pumping occurs. Additionally, for this state no Raman coupling occurs as no
other degenerate level can be populated. As a consequence, all atoms finally end up in
this state. The final temperature of the sample is reached at an equilibrium value de-
termined by the heating rate introduced by scattering of lattice light and the cooling rate.

The realization of Raman sideband cooling in the experiment is illustrated in Fig. 5.7 (b).
The optical lattice is formed by three laser beams, one in vertical direction and two in
horizontal direction. Each of the beams has a beam waist of w0 = 1.1 mm. Due to spa-
tial constraints imposed by MOT and ODT the crossing angles between the horizontal
beams is θ = 55◦. On top, one of these beams is retro-reflected to form a standing
wave. The overlap region of the beams forming the lattice is aligned onto the center of
the optical dipole trap to achieve efficient loading of the lattice. The polarizations of
the laser beams are chosen as depicted in the sketch. Either of the propagating beams
has its polarization pointing along the direction of the other one, the polarization of
the standing wave encloses an angle of 55◦ with the x-y-plane. This choice of polar-
izations guarantees maximum lattice depth for a given power of 35 mW in each beam
and detuning. The wavelength of the lattice is chosen to be 780.262 MHz, resulting in a
detuning of ≈ 12 GHz with respect to the |5S1/2,F = 1〉 ↔ |5P3/2,F = 2〉 transition.
This detuning exceeds the bandwidth of the fast photodiodes and the amplifiers used
for the stabilizing the laser frequency. For this reason the laser is free running which
results in a drift on the order of 10 MHz per day. As this is very small compared to
the overall detuning it is not influencing the depth of the optical lattice an the final
temperatures obtained by the cooling. Calculation of the lattice for the given experi-
mental parameters [116] yield a global depth of each lattice site of ULattice = 142 µK =
786Er and trap frequencies of {ωx,ωy,ωz} = 2π· {161, 66, 57} kHz. The trap frequen-
cies determine the spacing ∆En = h̄ω of the harmonic oscillator levels, resulting in
{∆En,x, ∆En,x, ∆En,x} = {7.7, 3.2, 2.7} µK. In comparison, the recoil energy of the D2
line in 87Rb at a wavelength of 780 nm is Er = 0.18 µK. As this value is small compared
to the level spacing, the lattice is operated deep in the Lamb-Dicke regime.
The polarizer for optical pumping is superimposed from top with the lattice beam

pointing in z-direction and σ+ polarized with respect to the magnetic field pointing in
z-direction as well. To bring atoms ending up in |0, 1〉 back in the cooling cycle the po-
larization contains a small fraction of π-light.

Once all beams are aligned with respect to the optical dipole trap, all available param-
eters have to be optimized. The most crucial parameter to play with is the direction and
strength of the magnetic field, which can be applied by three Bias coils (compare A.1).
First, for defined σ+ polarization of the polarizer beam it is necessary to avoid any mag-
netic field in the x-y-plane. An appropriate method to find a good starting parameter is
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to perform microwave spectroscopy on the hyperfine splitting of the ground state. Only
if the magnetic field is canceled out well enough, the positions of transitions between
different magnetic spin states in the spectrum coincide. Second, to achieve the required
degeneracy of different oscillator levels the strength of the magnetic field in z-direction
has to be chosen according to oscillator level spacing. Having found these starting pa-
rameters the performance of the Raman sideband cooling interval in the sequence can be
optimized by changing power and detuning of the polarizer on maximum atom number
and lowest temperature for a given final trap depth of the ODT.
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Figure 5.7: Raman sideband cooling in Rb (a) Working principle of Raman sideband
cooling. Two-photon Raman transitions between degenerate motional levels n of
different spin states result in a loss of kinetic energy. By optical pumping with
the polarizer in the Lamb-Dicke regime atoms can be transferred back to mF = 1
without changing the motional quantum number by more than 1. After several
cooling cycles all atoms end up in the oscillator level denoted as final state. (b)
Arrangement of the laser beams forming the optical lattice and the polarizer for
optical pumping. Bold arrows at the end of each arrow represent the propagation
direction of the laser beam, the thinner gray arrows indicate the polarization. (c)
Ratio of the atomic density with and without RSC after a time of flight of 2 ms.
(d) Transmission of the probe laser through the cold atomic cloud. The resonant
optical density obtained by fitting eq. (4.20) to the data changes from OD = 24
without RSC to OD = 71 after RSC.

Fig. 5.7 (c) shows the ratio of the atomic density measured by absorption imaging
after a time of flight of (ToF) 2 ms with and without RSC. After this ToF, utilization
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of RSC in an otherwise identical sequence results in an increase of the peak density by
more than a factor 1.5. Additionally, as a consequence of the lower temperature the cloud
expands slower after switching of the optical dipole trap. By measuring the dimensions
of the cloud in a time of flight series the final temperature of the atoms is determined to
by TRSC = 2.9 µK. This is more than a factor of 3 lower compared to the temperature
of 10.9 µK measured at same parameters without RSC.
More important for the experiment is the increase of optical density for the probe

beam. Again for same starting parameters but with and without RSC, Fig. 5.7 (d) shows
a transmission spectrum of the probe field with respect to the atomic resonance. Fitting
eq. (4.20) to the spectra yields a change of optical density from OD = 24 without RSC to
OD = 71 with RSC. This change is of huge benefit for the experiment as it reduces the
delay time of polaritons in the medium and thus yields stronger optical nonlinearities.

5.3 measurement of rydberg mediated nonlinearities

Having introduced the general experiment setup in this section typical experiments
demonstrating the giant optical nonlinearities are discussed. Out of a wide range of
possible applications, the focus is put on two distinct examples. A first example is the
nonlinear transmission on EIT resonance and its impact on the temporal correlation
function of the transmitted light. The second example discusses the influence of photon
scattering on storage and readout experiments and their possible application in quantum
information science.

5.3.1 Nonlinear EIT transmission and photon statistics

The nonlinear transmission, strongly depending on the intensity of the applied probe
field, was the first quantity investigated in Rydberg-EIT experiments [37]. Once the setup
has been built, the measurement of such nonlinearities is straightforward. Fig. 5.8 (a)
presents the rate of transmitted probe photons Rout as a function of the input rate Rin.
The measurement shows a clear saturation of transmitted photons already at input rates
of the order Rin = 1 µs−1. In fact, maximising the nonlinearity by changing the position
of the atomic cloud allowed to align the cloud to the focus spot of the probe beam.
The strong nonlinearity is also reflected in the measurement of the intensity correlation

function g2(τ ) shown in Fig. 5.8 (b). As the waist of the probe beam at the position
of the atomic cloud is more narrow than the Rydberg blockade, g2(τ ) reveals strong
antibunching at τ = 0, i.e. the generation of non-classical light.

5.3.2 Transistor measurement with readout

The availability of two independent probe and control lasers in the optical setup allows
for measurements of all optical switches [120] and transistors [47, 54, 48]. The idea is,
in analogy to an electric transistor, to switch a rather large source current (stream of
photons) by a very tiny gate current. In the absolute limit of an all optical transistor, a
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Figure 5.8: Photon nonlinearities mediated by Rydberg interactions (a) Rate of trans-
mitted photons Rout as a function of input photon rate Rin measured on EIT res-
onance with ∆p = ∆c = 0. (b) Measured intensity correlation function g2(τ ). As
a consequence of the Rydberg interaction two polaritons cannot come too close to
each other inside the medium. This affects the photon statistics when polaritons
are converted back into photons outside the medium and results in antibunching.

single gate photon has the ability to modulate a large number of source photons. With
this setup such a single photon transistor was realized with a record optical gain G of up
to 200, where the optical gain is a measure how many source photons can be attenuated
by a single gate photon. The results of these measurement can be found in the thesis of
Hannes Gorniaczyk [97].

The data discussed in this section is relevant for the implementation of all-optical
quantum gates as e.g. the approach for a phase gate described in sec. (4.5.2). For such
an application, the gate photon, which induces the gate operation on a source (or tar-
get) photon, has to be retrieved again after the gate operation. This demand can be
realized utilizing the stopped light technique of EIT to first store a photon inside the
atomic cloud and subsequently retrieve the photon again [121]. According to eq. (4.26)
the group velocity of a light pulse inside the medium can be controlled by Ωc. As a
consequence, adiabatically decreasing Ωc when a probe pulse is inside the atomic cloud
increases the atomic character of the polariton such that a photon is finally stored as a
Rydberg excitation when Ωc = 0. Because of the indistinguishability of the atoms in the
cloud, this Rydberg excitation is shared between all atoms, forming a coherent collective
spin-wave10. When turning Ωc on again after a storage time τStorage, the coherence of
the spin-wave results in a enhanced emission of the probe photon in forward direction
such that the photon can be eventually detected [121]. For most efficient readout it is im-
portant, that the coherence of the spin-wave does not change in time. However, already

10Apart from the terminology, the treatment of such a spin-wave is in total analogy to the superatom
introduced in sec. (7.1.1). In this section also dephasing mechanisms of the superatom are discussed,
which naturally reduce the readout efficiency of a stored photon.
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movement of the atoms results in spatially varying phases of the spin-wave, as exten-
sively discussed in sec. (7.4). This sets a limit to the time-scale after which a photon can
be retrieved from the medium.

The blue curve in Fig. 5.9 (a) shows an example time trace of such a storage and re-
trieval experiment. At t = 0, a photon pulse with a mean photon number of Ngate = 0.65
is stored inside the atomic cloud (in the |68S1/2〉 state) by slowly switching off Ωc. As
the optical depth of OD = 16 does not allow fit the total pulse into the medium, photons
are already leaving the medium before Ωc is switched off, resulting in the detection of
photons at t = 0. At a time t = 3.5 µs the control field Ωc is turned on again, allowing
to retrieve ≈ 10% of the initially stored photons. Experiments performed at different
atomic densities and temperatures revealed the dependence of the storage efficiency on
these parameters [120].
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Figure 5.9: Transistor Operation with readout (a) EIT based storage allows to covert gate
photons into Rydberg spin-waves inside the atomic cloud and efficient retrieval in
forward direction after a certain storage time. When no source field is applied, the
gate photons can be red out after t = 3.5 µs with an efficiency of ≈ 10%. At a
mean input number of Ngate the transmission of source photons gets attenuated by
≈ 25%. At the same time, scattering of source photons lowers the readout efficiency
of gate photons. (b) The readout efficiency of gate photons decreases exponentially
with the number of scattered source photons. At a value of N s = 2.01 incident
source photons, the readout efficiency drops to 1/e.

Having a gate operation in mind, in between storage and retrieval of the gate photon,
a source photon has to be transmitted through the medium and e.g. its transmission
monitored. This is facilitated by the second pair of probe and control lasers in the
experiment. It allows to apply a second EIT scheme addressing a different Rydberg
state, therefore crosstalk of the control fields is avoided (this would lead to undesired
readout of the gate photon). To achieve yet strong interactions between the different
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Rydberg excitations, in this specific experiment the source EIT utilizes the Rydberg
state |66S1/2〉 which is close to a Förster resonance with |68S1/2〉 [54, 48]. Fig. 5.9 (a)
shows the transmission of the source field both with storing a gate photon before (purple)
and without (yellow trace). As a consequence of the strong photon-photon interactions,
the Ngate = 0.65 stored gate photons result in a reduction of the source transmission by
≈ 25%.
At the same time, when source photons are transmitted through the cloud, the readout

efficiency drops (red line). A more quantitative analysis of this observation is shown in
Fig. 5.9 (b), where the dependence of the readout efficiency on the number of source
photon is measured. The readout efficiency decreases exponentially with the number of
incident source photons, with a fitted 1/e value of N s = 2.01. In comparison, the dashed
yellow line indicates the probability that a source photon pulse with an average value of
N s contains no photon, stemming from the Poissonian statistics of the light. The fact
that this line is lower than the measured data suggests that a single incident gate photon
does not completely destroy the readout efficiency.
The vanishing readout efficiency hints at a dephasing of the spin-wave when source

photons are scattered. An evident explanation of the effect is the localization of the spin-
wave (which is initially distributed over all atoms) onto the size of the Rydberg blockade,
as source photons can only be scattered from this region. This results in a decreased
overlap of initial and final spin-wave and thus reduction of the readout efficiency [122].
As the observed effect imposes a limit on overall fidelities for Rydberg based all-optical
quantum gates, it is investigated in current theoretical work, predicting parameter ranges
for a better operation [123, 124]



6 Dipolar Dephasing of Rydberg
D-state polaritons

Changing the angular momentum of the Rydberg state coupled in the EIT scheme from
L = 0 (S-state) to L = 2 (D-state) allows discovering new interesting phenomena.
From the technical point of view, employing the D-states allows increasing the Rabi
frequencies of the coupling light due to the larger dipole-matrix elements for transitions
to the |5P3/2〉 level. From the interaction point of view, there is another advantage of
D- over S -states. Due to the nature of the quantum defects and the different electric
polarizabilities of different angular momentum sates, single color Förster resonances can
be addressed in small electric fields [33, 125, 55]. This enables to tune the character of
the Rydberg interaction from van-der-Waals type to resonant dipole-dipole interaction
or even turn the interaction completely off. Especially studying the effect of dipole-dipole
interaction on the polariton propagation inside an atomic medium is of high interest.
Furthermore, the anisotropic character of the Rydberg interaction experienced by Ry-

dberg D-states in combination with EIT adds another approach to investigating systems
with such interactions. With the goal to under strongly correlated quantum systems such
as high temperature superconductivity or the crystallisation of electrons in solid state
matter, long-range and spatially anisotropic dipole-dipole interactions (DDI) are studied
in a large number of approaches [126]. For example, magnetic dipole-dipole interaction
is used to couple individual nuclear spins to nitrogen-vacancy centers in diamond [127,
128]. More recently, magnetic DDI in dipolar ultra cold atomic gases [129, 130] enabled
the investigation stable self-bound droplets of a magnetic quantum liquid, a new state
of matter [131, 132]. On the other hand, electric DDI is investigated in systems of homo-
and heteronuclear polar molecules [133] or Rydberg atoms [134, 135]. There are proposals
how phenomena like quantum magnetism [136, 137, 57] or topological phases [138] might
be investigated in such kind of systems.
The rapid progress in the field of cold atomic physics over the last years provides

nowadays full control on the level of single atoms. Due to the availability of such tech-
niques, only very recently the angular DDI between single Rydberg atoms has been fully
mapped [88].
In this chapter, results obtained during the scope of this thesis and published in [49]

are discussed. Here, for the first time, the effects of the anisotropic Rydberg interac-
tion of Rydberg D-states on slowly propagating polaritons in a cold atomic medium is
experimentally studied. These experiments reveal an interaction-induced dephasing of
Rydberg polaritons already at very low input photon rates into the medium. By devel-
oping a model combining the numerical propagation of the two-photon wave function

67
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through the system with calculated Rydberg-Rydberg potentials, the experimentally ob-
served time-dependent decay of transmission of the probe field is simulated.
In detail this chapter is structured as follows: The first section of this chapter presents

the results obtained in the experiment when applying the EIT scheme to D-states. In a
series of measurements, the dependence of the loss in transmission on photon rate, Rabi
frequency and main principal quantum number is investigated. To gain a understanding
of the observed effect, the second section presents calculated Rydberg-Rydberg potentials
based on the discussions in chapter 3 and highlights the differences of D- and S -state
potentials and their relevance for the experiments. Subsequently, from the time evolution
of the eigenstates in the presence of interaction, an effective dephasing model is derived.
The core idea of this model is that strong dephasing in the presence of interaction, occur-
ring already outside the blockade region, causes decoupling of polaritons from the control
light. These decoupled polaritons lead to stationary Rydberg excitations which block the
transmission of further polaritons. Finally, results obtained by numerical propagation of
the two-polariton wave function through a 3D medium including the dephasing model
are presented.

6.1 experimental results

The experiments described in this section were carried out in the first generation setup
described in chapter 5, without the electric field control and the ability to detect Rydberg
atoms via field ionization. For all experiments presented here, the experiment scheme
presented in Fig. (6.1) was applied.
For fast data acquisition the ODT is modulated in these experiments such that several

measurements in a single MOT cycle can be taken. For all experiments presented within
this chapter, the ODT is switched off 30 times after each MOT loading phase for 32 µs
during which data is taken. Subsequently, the atoms are recaptured during 230 µs. After
recording the photons transmitted through the atomic ensemble by this method (this
gives the signal counts), the ODT is turned off for 10 ms. During this switch off time the
atoms can escape from the trapping region allowing to measure the number of photons
sent into the chamber as a reference.
To efficiently recapture the atoms in the ODT after each measurement, the atoms

loaded from the MOT are evaporatively cooled to a temperature of 30 µK. At this
temperature, the resulting cloud size is σz = 80 µm in the longitudinal direction and
σr = 25 µm in the transversal direction with respect to the probe beam, resulting in
a constant OD of 45 over the full range of the 30 pulses. Due to the dependence of
the delay time τdelay (eq. (4.27)) on OD, this stability is very important to investigate
propagation effects.
By choosing the polarization of the control field Ωc to be σ+-polarized with respect

to the quantization axis, only the mJ = 5/2 component of a nD5/2 Rydberg state
is addressed, resulting in a isolated three-level system consisting of the states |g〉 =
|5S1/2,F = 2,mF = 2〉, |e〉 = |5P3/2,F = 3,mF = 3〉 and |r〉 = |nD5/2,mJ = 5/2〉.
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Figure 6.1: Rydberg EIT with D-states (a) Level scheme applied for the measurements. To
measure the EIT transmission, both laser fields Ωp and Ωc drive the corresponding
transitions on resonance (∆p = ∆c = 0). To achieve a clean three-level system,
the polarization of Ωc is chosen to be σ+, coupling the intermediate state |e〉 to a
|nD5/2,mj = 5/2〉 state. (b) EIT spectrum involving the state |r〉 = |80D5/2〉.

Fig. (6.1) (b) shows a transmission spectrum in which the frequency of the probe
field is scanned across the resonance, while the frequency of the control field with Ωc =
2π· 10.5 MHz is kept constant and couples the intermediate state resonantly with the
|80D5/2〉 state. At a low input photon rate of Rin = 0.15 µs−1 this results in a narrow
EIT peak with a high transmission of 70% around two-photon resonance. From a fit to
the spectrum a dephasing rate γr = 2π· 200 kHz can be determined, resulting from
thermal movement of the atoms at the finite temperature and stray electric fields over
the atomic cloud. This is a typical value also measured with S - instead of D-states.
Increasing the input photon rate to Rin = 6.59 µs−1 results in a decrease of the trans-

mission of the EIT feature, while neither the position of the line shifts nor its width
increases. The effect is therefore purely caused by the self-blockade of propagating Ry-
dberg polaritons, already observed before [37, 38, 39] for S -states. Both the narrow
spectrum and the strong nonlinear transmission through the medium do not reveal any
difference compared to the same experiment carried out with a high lying Rydberg S -
state. A qualitatively new effect, when applying the EIT scheme to D-states, occurs
when the temporal dependence of the transmission is investigated, as shown in Fig. 6.2
for |88D5/2〉 (a) and |90S1/2〉 (b).

Focusing on the measurements for the state |88D5/2〉 first, the transmission remains
constant over the full time range of the pulses when working at very low input photon
rate Rin = 0.15 µs−1, where the chance to find two polaritons inside the medium is
very small. The finite transmission at this rate is only determined by the control Rabi
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frequency Ωc, which in this measurement is Ωc = 8.3 MHz, and the decoherence rate
γr.
If the rate of input photons is increased to Rin = 1.74 µs−1, besides the drop in ini-

tial transmission resulting from the self-blockade of polaritons, there is already a visible
decay of transmission over the time of the pulse. The decay of transmission gets even
faster, when Rin is increased further (blue line, Rin = 5.84 µs−1).

In contrast, Fig. 6.2 (b) shows the experimental results when the EIT scheme is applied
to the Rydberg state |r〉 = |90S1/2〉. For better comparison, the control Rabi frequency
Ωc = 2π· 10.2 MHz and the input photon rates Rin are chosen similar to the values
for the experiments presented for the measurement with |88D5/2〉. For input rates of
Rin = 0.43 µs−1 and Rin = 2.1 µs−1 the data reveals no change of transmission over the
full range of the pulse. Only for the largest input rate of Rin = 5.4 µs−1 a small drop
in transmission occurs in this dataset. However, the observed change in transmission
is much smaller than the one measured with |88D5/2〉. At the same time, the initial
transmission for similar photon rates is almost identical for the measurements with S -
and D-states.
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Figure 6.2: Time dependent transmission on EIT resonance (a) Measured time traces
of probe photons transmitted through the medium on EIT resonance. For this
measurement, the control field couples resonantly to the Rydberg state |r〉 =
|88D5/2,mJ = 5/2〉 with a Rabi frequency Ωc = 2π· 8.3 MHz. When the input
photon rate Rin is increased to values at which two polaritons are in the medium
at the same time, the transmission decreases over time. (b) Measurement as in (a)
but applying the EIT scheme to the Rydberg state |r〉 = |90S1/2,mJ = 1/2〉. For
this Rydberg state only a weak change in transmission is observable at the highest
input photon rate.

A feasible explanation is that interaction-induced coupling of degenerate Zeeman sub-
levels results in a conversion of polaritons into stationary Rydberg excitations inside the
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cloud, see sec. (6.3.2). Due to the Rydberg interactions, these impurities shift the Ryd-
berg levels of surrounding atoms and thus prevent further polaritons from propagating
through the cloud [120, 47, 54].

To find scaling laws of the observed effect with input photon rate Rin, Rabi frequency
Ωc and principal quantum number n it is reasonable to express the transmission proper-
ties by the means of an effective optical density ODeff on EIT resonance (∆p = ∆c = 0).
According to the definition of the optical density, ODeff is calculated from the transmis-
sion TEIT of the time traces by

ODeff = − log10(TEIT ). (6.1)

In this form the different effects influencing the transmission show up in the sum

ODeff = ODdec +ODnl(Rin) +ODdph(Rin, t) (6.2)

and can be treated in a more thorough way. The single terms ODdec, ODnl and ODdph

represent the contributions stemming from decoherence caused by finite γr, self-blockade
of propagating polaritons and finally the newly observed effect due to interaction induced
dephasing of degenerate Zeeman spin states. In the following the discussions are restricted
to the latter, as the two other effects have already been treated precisely before [37, 38,
39].
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Figure 6.3: Creation rates of optical density (a) From the transmission of the pulses on
EIT resonance a effective optical density ODEIT is calculated. Except for the highest
photon rates which show saturation effects the pollution leads to a linear increase
in OD over time. (b) Dependence of creation rate ROD of additional OD on the
input photon rate for different Rabi frequencies Ωc. The rates ROD are extracted
from the time traces shown in (a) by fitting eq. (6.3) in the linear regime.
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In Fig. 6.3 (a) the transmission of the previously shown time traces is transformed
to ODeff according to eq. (6.1). Except for the highest input photon rates Rin, for
which the slope of the increase in OD changes after a certain time, the additional term
ODdph(Rin, t) accumulates linearly with time. Neglecting these saturation effects for the
highest values of Rin the increase in OD due to dephasing can be approximated to be
linear in time and written as

ODdph = ROD · t, (6.3)

where ROD is introduced as a creation rate of additional optical density by decoupled
impurities. For all available data sets, these creation rates are determined by a fit to the
experimental data.
The dependence of ROD on Rin for a set of Rabi frequencies Ωc measured by applying

the EIT scheme to |r〉 = |88D5/2,mJ = 5/2〉 is presented in Fig. 6.3 (b). The data
sets with Ωc = 2π· 16.6 MHz and Ωc = 2π· 26.3 MHz show a clear quadratic scal-
ing of ROD with Rin over the full experimentally studied input range. This quadratic
dependence suggests that the observed dephasing is a two-body effect, supporting the
assumption that the observed effect is related to the Rydberg interaction. In particular,
this experimental observation justifies the treatment later on in sec. 6.3, where finally
the dephasing is related to the probability

|ψdd|2 =
R2
in

v2
g

. (6.4)

to find two polaritons in the Rydberg state at the same time at distances larger than the
blockade radius rb.
For the smaller Rabi frequencies Ωc = 2π· 6.1 MHz and Ωc = 2π· 10.8 MHz de-

viations from the quadratic dependence occur for Rin exceeding 1.5 µs−1 and 2.7 µs−1,
respectively. The vertical dashed lines indicate the rates at which the mean number of
polaritons inside the medium exceeds 2, calculated from the delay time of a pulse in-
side the medium given by τdelay = OD· Γe

Ω2
c

and taking into account the finite initial
EIT transmission at time t = 0. This change from the quadratic behaviour might be
influenced by three-body interaction of Rydberg polaritons [44], yet there is no further
indication and the treatment of three-body effects is challenging.
On account of this dependence it is sensible to introduce a rate constant C(Ωc) which

relates ROD to Rin in the quadratic regime via

ROD = C(Ωc)·R2
in. (6.5)

For all available datasets, these rate constants are determined by a fitting eq. (6.5)
to the observed creation rates of additional OD (ROD). The resulting rate constants
are plotted versus Rabi frequency Ωc for different measurements with main principal
quantum numbers of n = 80, n = 88, and n = 100 in Fig. 6.4. The presented errorbars
are calculated from the accuracy of the involved fitting by error propagation. It is striking,
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Figure 6.4: Scaling of rate constants with Rabi frequency Ωc and principal quantum
number n The rate constants C(Ω) are determined by fitting eq. (6.5) to the
extracted creation rates of additional optical density ROD. For the measurements
with different principal quantum numbers, the rate constants C(Ω) show a power-
law dependence with the exponent k = 1.67(4).

that the measurements for the different principal quantum numbers obey the same power
law dependence on the control Rabi frequency Ωc. A fit of the form

C(Ω) = a· Ω−kc (6.6)

yields k = 1.67(4) for all different principal quantum numbers presented here. On the
other hand, the pre-factor a scales strongly with main principal quantum number n
indicating significantly larger dephasing for larger n.

6.2 rydberg-rydberg potentials

The reason for the scaling of the measured effects is not explainable with the well-known
scaling laws of Rydberg interaction (chapter 3). As mentioned already before, one possible
explanation is the interaction induced dephasing of Rydberg polaritons caused by the
state mixing of Zeeman sublevels, leading to stationary Rydberg impurities inside the
cloud. In contrast to S -states, this effect is much stronger for D-states due to the larger
number of degenerate levels.
The consequences of such degeneracy is discussed in great detail for perturbative cal-

culations by T. Walker and M. Saffman in [80]. In this article, the authors show that
coupling of different angular momentum states leads to state mixing of the degenerate
Zeeman levels resulting in anisotropic Rydberg interactions for any angular momentum
states except for S -states.
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Figure 6.5: Calculated Rydberg pair state potentials (a)+(b) show Rydberg pair po-
tentials of |100S1/2, 100S1/2〉 calculated for angles of ϑ = 0◦ (a) and ϑ = 40◦ (b)
inclosed between interatomic axis and the quantization axis defined by the laser
fields. Potentials for the same angles ϑ for the pairstate |100D5/2, 100D5/2〉 are
shown in (c)-(d). The color shading on the gray potential lines represents the pro-
jection of the |mJ1,J2 = 1/2, 1/2〉 (|mJ1,J2 = 5/2, 5/2〉) in the uncoupled basis
onto the new eigenstates in the presence of interaction according to eq. (6.10). In
comparison to S-states, the state mixing of degenerate Zeeman spin states results
in several coupled lines for D-states interacting under an finite angle ϑ. (e) Cal-
culated potential for |80D5/2, 80D5/2〉 at an angle ϑ = 40◦. The time evolution of
the new eigenstates in the presence of interaction results in the time evolution of
the overlap with the unperturbed state according to eq. (6.13), shown in (f). The
selected distances are 20 µm (blue line), 15.5 µm (red line),13 µm (yellow line),
10.5 µm (purple line) and 8 µm (green line).
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6.2.1 Anisotropic Rydberg Blockade

For qualitative analysis, Fig. 6.5 shows full numerical calculations of the angular depen-
dent Rydberg-Rydberg potentials according to chapter 3. Following the discussion there,
the angle ϑ is drawn by the interatomic axis and the quantization axis pointing along
the direction of light propagation. Technically, to save computation time, the interaction
Hamiltonian Hint is diagonalized in the interatomic coordinate system where the total
magnetic moment M = mJ1 +mJ2 is conserved. Subsequently, the states are rotated by
Wigner-d-matrices back into the lab coordinate frame [80].

To calculate how strong the individual potential lines are coupled by a laser field,
one has to keep in mind that the interaction admixes the basis states of the uncoupled
basis. To each potential line k with eigenenergy Ek(z) an eigenstate |ψk(z)〉 is assigned.
Transformation from the uncoupled eigenstates to the new ones (and back) is provided
by the unitary operator A (A†). The relation between new and old eigenstates |nj〉 is
then given by

|ψk〉 =
∑
j

ajk|nj〉 (6.7)

|nj〉 =
∑
g
a∗jk|ψg〉.

It should be stressed at this point that both eigenstates |nj〉 and |ψk〉 are product states
consisting of two Rydberg states. As the interaction is spatially varying the coefficients
ajk mixing the uncoupled states strongly depend on the interatomic position. Especially
at close interatomic distances the manifold is crossing the interaction is not a small per-
turbation anymore.

To draw conclusions from the potential landscape onto the Rydberg blockade the opti-
cal coupling strength of individual lines has to be calculated [139]. While the explanation
of the Rydberg blockade in sec. (4.5) only holds when the potential shows a single line,
for more complicated potentials as in Fig. 6.5 the probability to excite at doubly-excited
state has to be calculated in a two-step approach. Since the coupling from ground state
|g〉 to intermediate state |e〉 is not influenced by the Rydberg interaction it is sufficient to
consider transitions driven by the control light. The Rabi frequency of the first excitation
step from the intermediate state |e〉 = |5P3/2,F = 3,mF = 3〉 to the addressed Rydberg
state |r〉 (single-atom state) is simply given as product of the dipole matrix element and
the intensity of the control field

Ωc,1 = −eE
h̄
〈e|εr|r〉. (6.8)

The newly introduced parameter ε represents the polarization of the coupling field, only
addressing certain magnetic spin states due to selection rules. Once the first excitation
has been created, the calculated Rydberg-Rydberg potential has to be included to de-
termine the coupling strength to the k-th potential line. Further, as the first atom is
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already excited to |r〉, the excitation can only occur to any pair state with one of the
atoms in this state and the other one in a state dipole coupled to the intermediate state.
To take this into account, the dipole operator in the pair state basis takes the form
r′ = r⊕ 1 + 1⊕ r. In addition, the single excited state |i 6 has to be written in the pair
state basis |i〉 = 1√

2 (|e〉|r〉+ |r〉|e〉) as well. With this preparatory work, the strength of
the second excitation step can be written as Rabi frequency

Ωc,2 = −dE
h̄

= −eE
h̄
〈i|εr′|ψk〉 (6.9)

= −eE
h̄

∑
j

〈i|εr′ajk|nj〉.

By the appearance of the sum over the uncoupled states the admixing of states due to
the interaction is taken into account.
In general the coefficients ajk can be complex and the sum has to be evaluated over

all j. However, in the following the admixture of other states compared to the initially
addressed state |r〉 is very small. Thus, to better visualize the strength of the coupling,
the potentials plotted in the following show the overlap

pk = |〈r| ⊗ 〈r||ψk〉|2 (6.10)

of the new eigenstate |ψk〉 with the doubly excited pair state |r〉 ⊗ |r〉 of the state |r〉
addressed by the EIT scheme.
Fig. 6.5 (a) and (b) show the calculated pair state potentials for |100S1/2,mJ =

1/2; 100S1/2,mJ = 1/2〉 at angles ϑ = 0◦ and ϑ = 90◦, respectively1. At ϑ = 0◦, the
calculations result in a single potential line following a typical van-der-Waals behaviour
with C6 = 5.65 · 104 GHzµm6 which is in very good agreement with the value given of
C6,Singer = 5.61 · 104 GHzµm6 calculated perturbatively without fine structure coupling
in [31]. This nice van-der-Waals type of interaction changes only slightly when calcu-
lating the potential for an angle ϑ = 40◦. The state mixing results in a splitting into
two-potential lines with C6,1 = 5.65 · 104 GHzµm6 and C6,2 = 5.88 · 104 GHzµm6. At
a position of 10 µm, which for a typical EIT linewidth of 5 MHz is already inside the
blockade region, this results in a splitting approximately 1 MHz.

In comparison, pair potentials for |100D5/2,mJ = 5/2; 100D5/2,mJ = 5/2〉 (with the
same constraints on Hint) are presented for the same angles ϑ as before in Fig. 6.5 (c),(d).
As for the S -state at ϑ = 0◦ the constraint ∆M = 0 allows only a single coupled
channel which results in a single potential line. A fit to the calculated potential yields
C6(100D5/2) = −4.97 · 104 GHzµm6 which is differs from the value of C6,Singer(100D5/2) =
−4.12 · 104 GHz(µm)6 by about 17%. Reason for this discrepancy is mainly the neglect
of the fine structure coupling in the perturbative calculation.

1For the calculations the constraints for Hint are: % = 5, ∆Epair = 4 GHz, ∆n = 5, ∆L = 3, no
restrictions on ∆J and ∆m.
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A totally different potential landscape occurs in the calculation for ϑ = 40◦. The 36
different realizations of the total magnetic moment M = mJ1 +mJ2 = 1..5 which are
all coupled with different strength result in a large number of potential lines. In contrast
to the S -state discussed before the splitting of the lines is much larger in this example,
even leading to strong deviations from the typical C6 potential of the different lines at
interatomic distances shorter than 15 µm.
A direct consequence of several lines coupled by the excitation line is the anisotropy

of the Rydberg blockade [55]. As discussed in sec. (4.5) the blockade radius is defined
as the distance where the lineshift due to the interaction exceeds the linewidth of the
excitation. In the presence of several coupled lines this definition has to be slightly
modified. The most strict ansatz is to define rb as the position where even the weakest
coupled potential is shifted out of the excitation linewidth. A less crude definition is to
permit a small fraction of the overlap inside the excitation linewidth.

6.2.2 Time evolution

Another consequence of the state mixing of the degenerate Zeeman spin states is its im-
pact on the time evolution of the states. In the presence of interaction the time evolution
of the new basis states is determined in the Schrödinger picture by

|ψk(t)〉 = exp
(
−iEk

h̄
t
)
|ψk(t = 0)〉. (6.11)

Transformation according to eq. (6.7) directly yields the time evolution

|nj(t)〉 =
∑
g
a∗jg|ψg〉 (6.12)

=
∑
g

exp
(
−iEg

h̄
t
)
a∗jg|ψg(t = 0)〉

for an old eigenstate |nj〉. Taking into account the overlap of potential line |ψg〉 defined
in eq. (6.10) yields the time dependent overlap

p(t) = |〈r| ⊗ 〈r|
∑
g

exp
(
−iEg

h̄
t
)
a∗jg|ψg(t = 0)〉|2 (6.13)

= |
∑
g

exp
(
−iEg

h̄
t
)
a∗jgajg︸ ︷︷ ︸
pjg

|2

with the addressed pair state |r〉 ⊗ |r〉.
This result can be interpreted as a Fourier-transformation of the probabilities pjg os-

cillating with a individual frequency Eg/ h̄. For a single coupled state the time evolution
yields a single global phase which is averages out when the absolute value is evaluated.
However, when several states are coupled simultaneously, even small differences Eg result
in a strong time evolution p(t) since all probabilities pjg evolve differently in time.
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To visualize this result, Fig. 6.5 (f) shows the time evolution of p(t) in the presence of
the interaction calculated for |80D5/2, 5/2, 80D5/2, 5/2〉 (subfigure (e) shows the corre-
sponding potential) at ϑ = 40◦. At a large distance of 20 µm, the interaction is still such
weak that the energy-levels are hardly perturbed. Consequently, p(t) is still constant over
the calculated range of 500 ns. With decreasing interatomic distance and thus increased
splitting of the potential lines, the time evolution gets faster. In principle this dynamic
is completely coherent. On long enough timescales one should thus expect revivals in the
time evolution. The relevant time scale for the experiment is however determined by the
delay time τdelay of a polariton in the medium which is on the order of a few hundred
nano-seconds for which the simulations do not show total revival. The graph shown here
is just one example, actually the time evolution has to be evaluated individually for each
principal quantum number and angle ϑ as it strongly depends on the overlaps pk and
energies Ek. It should be pointed out here, that for a S -state such time evolutions cannot
be observed for any angle as the splitting of the lines is too small.
The consequence of this time evolution is that the coupling strength of two Rydberg

atoms placed at a certain distance becomes time dependent and can even vanish. This
supports the interpretation of the decay in transmission proposed before and will be
further evaluated in the following section.

6.3 simulation of the experiment

The aim of this final section is to bring together the observed effect of a time dependent
transmission when working with Rydberg D-states and the time evolution caused by the
strong mixing of degenerate Zeeman spin states.

6.3.1 Relevant distances

The conclusion of sec. (4.5) was that in order to observe strong optical nonlinearities
and antibunching in the intensity correlation function of transmitted probe light a one
dimensional system in the direction of light propagation is required. For this reason the
beam waist of the probe beam in the experiment is chosen to be only 6.2 µm. Section (6.2)
revealed however, that a time evolution of the pair state does only occur for finite angles
ϑ drawn between the quantization axis and the interatomic axis. The relevant distances
for the experiment are illustrated in Fig. 6.6. Inside the medium two polaritons (Rydberg
atoms) are separated by a distance d‖ in the direction of propagation. The finite width of
the beam waist allows for a distribution in the x-y-plane resulting in a vertical distance
r⊥. This results in an angle ϑ of the interatomic axis with respect to the quantization
axis and a interatomic distance given by d =

√
d2
‖ + r2

⊥.
To get an impression which angles ϑ and interatomic distances d play a role in the

experiments their probability densities were numerically simulated for different distances
d‖ in the range of 4 µm to 30 µm, shown in Fig. 6.6 (b). In the simulation, two disks
at a distance d‖ are selected and subsequently on each disk the a position is randomly
picked with a probability given by a normal distribution with a width of 6.2 µm and its
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(a) (b)

Figure 6.6: Angle distribution of two polaritons in a medium (a) Sketch of distances
involved for the interaction of two polaritons inside a medium. Along the direction
of propagation the two polaritons are separated by a distance d‖. The finite width
of the probe field beam with waist w0 = 6 µm allows for a distribution of atoms
in the x− y-plane resulting in a vertical distance r⊥. For the interaction thus the
angle ϑ and the interatomic distance d =

√
d2
‖ + r2

⊥ are important. (b) Numerical
simulation of the probability distribution of angles ϑ and interatomic distances d
for different distances d‖ ranging from 4 µm to 30 µm in steps of 1 µm.

origin in the center of the disk. By this procedure a single transverse distance r⊥ can be
found which in turn allows calculating the angle ϑ and the interatomic distance d as the
distance d‖ of the disks is known. Repeating this procedure many time allows finding
distributions for ϑ and d for a given d‖.
The result points out what one would naively expect. For large distances d the proba-

bility to find two polaritons is restricted to relatively small angles θ and a small spread
in d. On the other hand, for small d a broad probability density can be expected. The
range of interest for the experiment is at d ≈ 10 µm which is a typical value for the Ryd-
berg blockade at sates with principal quantum number n around 100. At such distances
expected angles are almost uniformly distributed up to ϑ = 70◦.

6.3.2 Effective dephasing model

The occurrence of relatively large angles ϑ motivates the inclusion of the anisotropic
Rydberg interaction and time evolution into the wave equations describing the polariton
propagation through a medium [38, 41]. Most accurately, this should be done by including
all degenerate Zeeman levels and the coupling between these levels into the propagation.
In principle such treatment is doable up to four or five levels [140, 48], but gets very
challenging with the large amount of levels one has to deal with in this case. A commonly
used approach for the treatment of multi-level problems is thus to reduce the full system
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Figure 6.7: Effective dephasing model for Rydberg polaritons (a) Anisotropic block-
ade volume and dephasing rate Γ(z, r⊥) calculated for the |80D5/2,mJ =
5/2; 80D5/2,mJ = 5/2〉 state. (b) Illustration of the effective dephasing model.
Inside the Rydberg-blockade the Rydberg interaction leads to a decay of the po-
lariton amplitude due to Rydberg-Rydberg interactions leading to the self-blockade
of Rydberg polaritons. Outside the blockade radius coupling between degenerate
Zeeman levels leads to a time evolution which leads to a dephasing out of the state
coupled by the control light.

to an effective model describing both the interaction and dephasing. The effective level
structure incorporated in the calculations of this chapter is shown in Fig. 6.7 (b). From
the shifts of the levels and the coupling strength an anisotropic blockade radius rb(ϑ) is
calculated, yielding an effective interaction potential V (z, r⊥). This term by itself results
in the nonlinearity caused by the self-blockade of Rydberg polaritons already observed for
S -states [37, 38]. On the other hand outside the blockade region, i.e. when the overall shift
and the splitting of the lines is smaller then the excitation linewidth, the evolution of the
coupled pair-state is described by an effective dephasing rate Γ(z, r⊥) (indicated by the
green arrow) out of the coupled pair state into the Zeeman-manifold. As a consequence
of the σ+-polarization of the control light the levels in the Zeeman manifold are not
coupled. Thus dephasing into this level leads to stationary Rydberg excitations in a
different magnetic spin state. Once such an event has happened, subsequent polaritons
are attenuated due to the Rydberg blockade.
To obtain Γ(z, r⊥) the time evolution of a stationary Rydberg pair is calculated ac-

cording to sec. (6.2.2) for a given distance d and an angle ϑ. As discussed before revivals
will occur only on timescales long compared to the ones relevant for the experiment. For
this reason the time evolution can be well described by a dephasing rate which is varying
in space.
Both the effective dephasing rate Γ(z, r⊥) and the interaction potential of course de-

pend on principal quantum number and excitation linewidth and thus have to be calcu-
lated for all experimental parameter sets individually. As an example, Fig. 6.7 (b) presents
the calculation obtained for |80D5/2,mj = 5/2〉 for a bandwidth Ωc = 2π· 6.2 MHz.
This calculation clearly shows the anisotropic character of the Rydberg blockade, differ-
ing almost by a factor of two for the semi axis. More importantly, the figure shows that
the dephasing rate Γ(z, r⊥) is not negligible outside the blockade radius.
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6.3.3 Numerical propagation of the wave function

To simulate the transmission through the medium the effective dephasing model is in-
corporated in the equations describing the polariton propagation [12]. The results in this
section are based on simulations by Przemyslaw Bienias. More detailed discussions can
be found in his PhD thesis [141].
The simulations assume that the photon rate is so weak that only two polaritons are

in the medium at the same time. These polaritons are described by a two-body wave
function ψdd(r1, r2) containing on polariton at position r1 and the other one at position
r2. The propagation of this wave function through the medium is described by a full set
of equations [38, 41], which are extended here by the dephasing rate Γ(z, r⊥) resulting in
a decay of ψdd(r1, r2). To simplify the calculations, the density distribution is assumed
to be homogeneously distributed over a length L = 4σz. Adapting the length of the
medium compensates for neglecting the wings of the Gaussian density distribution. On
top, the calculations assume an effective beam waist weff = 7 µm to take into account the
change of the waist over the length L of the medium. With these parameters the polari-
ton dynamic is solved for different transverse distances r⊥ including a one dimensional
interaction potential V1D(z) = V (z, r⊥). Subsequently the three-dimensional character
of the system is obtained by averaging r⊥ over the transverse beam profile.
The result of the simulation is shown in Fig. 6.8 (a) for n = 80, Ωc = 2π· 12 MHz and

r⊥ = 4.2 µm. The right hand side of this graph (z > 0) shows the probability |ψdd|2 to
find two polaritons in the medium. Here R = (z1 + z2)/2 is the center of mass coordinate
while z is separation of the polaritons inside the medium. The simulation nicely reveals
the decay of |ψdd|2 for distances smaller 10 µm where the Rydberg blockade occurs. On
top the simulation shows a slight broadening of the region where ψdd|2 vanishes with
increasing center of mass coordinate R. This feature is missing in the simple simulations
in sec. (4.5) and has been discussed before as a diffusive behaviour [38]. While at the
entrance the probability to find two Rydberg excitations is only determined by the Ry-
dberg blockade, the dip broadens during the propagation due to the corrections to the
linear polariton dispersion [96].
On the left hand side (z < 0) Fig. 6.8 shows the product of |ψdd|2 and Γ(z, r⊥) for

the parameters mentioned before. The calculation results in a peaked dephasing around
z ≈ 10 µm. Reason is that for shorter distances the probability amplitude ψdd decays
due to the Rydberg blockade while for larger distances the rates Γ(z, r⊥) vanish.
Having found the amplitude of the two-photon wave function ψdd by the simulation,

the rate of events N that at least one photon is converted into stationary Rydberg
excitation is given by

N =
∫
V
dr1dr2Γ(r1 − r2)|ψddr1, r2)|2, (6.14)

where the Rydberg wave function is normalized to the incoming photon flux according to
eq. (6.4). One such dephasing event leads to an average increase of optical depth ODim

for subsequent incoming photons. The resulting reduction in transmission caused by a



82 dipolar dephasing of rydberg d -state polaritons

5 10 15 20 25

c
/2  (MHz)

10-3

10-2

10-1

ra
te

 c
o

n
st

a
n

t 
C

(
c
) 

(µ
s
) n = 80

n = 88

n = 100

(a) (b)

Figure 6.8: Numerical simulation of the polariton propagation (a) Right hand side
(z>0): Numerical simulation of the probability amplitude |ψdd|2 to find two polari-
tons propagating (center of mass coordinate R = (z1 + z2)/2 through the cloud at
a distance z. Left hand side (z<0): Product of probability amplitude and dephas-
ing rate Γ(z, r⊥) (b) Comparison of numerically calculated rate constants C(Ωc)
(points) and the fits to the data.

single dephasing event is thus given by exp(−ODdec −ODsat(Rin))
(
1− e−ODim

)
. As

this decrease in transmission appears with the rate N the initial time evolution for the
averaged transmission changes by

T (t) = e−ODdec−ODsat(Rin) exp
[
−N t

(
1− e−ODim

)]
(6.15)

leading to the rate constant C(Ωc) = N
(
1− e−ODim

)
/R2

in. The simulated rate con-
stants C(Ωc) are presented in Fig. 6.8 (b) for the different experimental parameters.
The numerical result show qualitative agreement with the experiment (lines from the fit
to the data), but only quantitative agreement for low n and small values of Ωc. Espe-
cially the strong scaling with main principal quantum number is not reproduced at all.
A reason for this discrepancy might be the fact that for large Ωc and n the ac-Stark
shift caused by the coupling to the intermediate state |e〉 becomes comparable to the
nD5/2 and nD3/2 manifold which scales with n−3. In this situation the approach of first
calculating the interaction potentials first and then including them into the polariton
propagation is not justified anymore.
Even more crucial is that in the experiment an effective saturation of the transmission

due to the finite lifetime of Rydberg atoms is observed. Inclusion of a higher number of
impurities is however challenging in the simulation, as more than two polaritons have
to be taken into account in this case. Yet, the higher number of impurities could play a
major role for further dephasing events especially for high principal quantum numbers.



7 Single-Photon absorption from an
arbitrary light field

The elementary operation of subtracting exactly one photon from an arbitrary light
pulse is of great interest for testing fundamental concepts of quantum optics [142, 143],
as well as for the preparation of non-classical states of light for quantum information
[144, 145, 146, 147], simulation [148, 149, 150], and metrology protocols [151]. Heralded
single-photon subtraction has been realized by monitoring the weak reflection of a highly
imbalanced beam splitter, where a single detection event corresponds to subtraction of
a photon from the transmitted pulse [152, 142]. For sufficiently low reflectivity such that
the subtraction of two or more photons becomes negligible, this procedure implements
the photon annihilation operator â [142]. This operation is inherently probabilistic, with
a success rate depending on the number of incoming photons. In contrast, deterministic
single-photon subtraction, where always exactly one photon is removed independent of
the input photon state, can be implemented by sending the light through a medium
saturable by a single absorption event. One realization of such a single-photon absorber
is a single three-level quantum emitter strongly coupled to an optical resonator [153,
154], recently demonstrated by S. Rosenblum et al. using a single atom coupled to a
microsphere resonator [155].
This chapter discusses the second project carried out during the scope of the thesis,

published as an Editor’s suggestion in Physical Review Letters [50]. The results demon-
strate a deterministic single photon absorber removing a single photon from an input
pulse containing up to N in = 35 input photons. The experiment is based on a proposal
of J. Honer et. al. [51] utilizing the Rydberg excitation blockade to saturate an optically
thick medium with a single photon. By measuring the amount of Rydberg atoms inside
the medium it is shown that a single absorbed photon leaves behind exactly a single
Rydberg excitation. This result adds a new component to the growing Rydberg quan-
tum optics toolbox [37, 38, 41], which already contains photonic logic building-blocks
such as single-photon sources [39], switches [120], transistors [47, 54, 48], and conditional
π-phase shifts [42]. This approach is scalable to multiple cascaded absorbers, essential for
preparation of non-classical light states for quantum information and metrology applica-
tions [152, 146, 156], and, in combination with the single-photon transistor, high-fidelity
number-resolved photon detection [51, 157, 158].

83
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7.1 a single rydberg atom in an ensemble of atoms

The most fundamental system to think of in the field of quantum optics is one single
photon strongly coupled to a single two-level atom. Unfortunately, the scattering cross
section of a single atom with a single photon in free space scales with λ2. The diffraction
limit of light thus imposes an upper limit for the coupling strength [159]. Placement of
a single atom in the node of a high quality resonator allows to enter the strong coupling
regime due to the amplification of the electric field strength [15]. Yet another approach
is the coupling of a single photon to a Rydberg superatom, an artificial atom consisting
of a single Rydberg excitation and many ground state atoms [29, 30].

7.1.1 The Rydberg superatom

The formulae derived for the atom-light coupling in chapter 4 are based on considering
a single atom coupled to a light field in the density matrix approach. Subsequently,
assuming no interaction between the atoms the back action of the atomic polarizability
onto the light field is derived by simple multiplication with the atom number. This
approach fails as soon as interactions between atoms start to play a role. In the following
the excitation dynamics of a single Rydberg atom in a ensemble of ground state atoms
is discussed.
As already mentioned, the excitation blockade between individual Rydberg atoms can

occur on distances larger than 10 µm if a high principal quantum number at low excita-
tion bandwidth is chosen. Assuming an atomic density of 1012 cm−3 typically achieved
in cold atomic gases, this results in a number of Nblockade = 1000 ground state atoms
within one blockade sphere. By driving the system with a single atom Rabi frequency
Ω = −eEh̄ 〈g|r|r〉, out of N ground state atoms only one single atom can be excited to the
Rydberg state. Under the assumption of a constant atomic density and a homogeneous
distribution of the laser intensity, the probability to be excited to the Rydberg state |r〉
is the same for all atoms. An intuitive example is to consider two atoms in their ground
state located at positions r1 and r2, separated by less than the blockade radius. Let this
state of the atoms be described by the product state |g〉r1 ⊗ |g〉r2 . Rydberg excitation to
|r〉 can thus either result in |r〉r1 ⊗ |g〉r2 where the atom in position r1 was excited, or in
|g〉r1 ⊗ |r〉r2 where the atom at position r2 was excited. The excitation of a doubly ex-
cited state |r〉r1 ⊗ |r〉r2 is excluded a priori due to the Rydberg interaction. This example
can easily be extended to more than one atom resulting in a number of (N + 1) single
atom states consisting of one state with all atoms are in the ground state, and N excited
states with one Rydberg excitation. In the following the labeling of the positions is for
simplicity hidden in the position of the state, for example |ggg · · · rj · · · g〉 means that all
atoms but the one at position rj are in the ground state. In analogy to the explanation
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of superradiant decay [59] the many-body character of the excitation can be treated by
introducing an entangled collective state

|W〉 =
1√
N

N∑
j=1

exp (−ikrj) |g1, g2, g3, · · · , rj , · · · , gN 〉. (7.1)

The phase factor exp(−ikr) originates from the phase of the excitation laser at the
position of the j-th atom excited to the Rydberg state. In accordance, the many-body
ground state is defined as

|G〉 = |ggg · · · gg〉. (7.2)

Consequently, the collective Rabi frequency coupling the many body states |G〉 and |W〉
becomes

Ωcoll = −eE
h̄
〈G|r|W〉 (7.3)

= −eE
h̄

1√
N

N∑
j=1
〈ggg · · · gg|r|g1, g2, g3, · · · , rj , · · · , gN 〉

=
1√
N

N∑
j=1

Ω =
√
NΩ.

I.e. in comparison to the single atom Rabi frequency Ω the collective Rabi frequency
Ωcoll is enhanced by a factor

√
N . This enhancement is shown in Fig. 7.1. A single atom

driven with a Rabi frequency Ω oscillates with this frequency between the ground state
|g〉 and the Rydberg state |r〉. Trivially, the maximum number of Rydberg atoms is one.
An ensemble of N (N = 9 in Fig. 7.1) independent atoms shows oscillations with the
same Rabi frequency, but the maximum number of Rydberg atoms changes to N as no
blockade occurs. On the other hand N Rydberg atoms oscillate with Ωcoll =

√
NΩ.

Indeed, the two many-body states |G〉 and |W〉 introduced so far are not sufficient to
span the same Hilbert space as the N + 1 single atom states. For completeness of the
basis, another N − 1 states |Dj〉 are required. However, it turns out that out of all states
|W〉 and |Dj〉, the former one is the only one which is dipole coupled to the ground state
|G〉 via the light field [51].
As an example, for N = 3, one representation of the collective states calculated by

means of the Gram-Schmidt process is

|W〉 =
1√
3
(|rgg〉+ |grg〉+ |ggr〉) (7.4)

|D1〉 =
1√
6
(−|rgg〉+ 2|grg〉 − |ggr〉)

|D2〉 =
1
2 (−|rgg〉+ |ggr〉) .
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Figure 7.1: Undamped collective Rabi oscillations A single atom driven with a Rabi
frequency Ω oscillates between its ground state |g〉 and its Rydberg state |r〉. The
Rabi frequency does not change if the same driving field is applied to a number of
N = 9 independent atoms. However, when the Rydberg blockade is strong enough
to allow only the excitation of a single Rydberg atom out of an ensemble of atoms,
the many body character results in a collective Rabi frequency Ωcoll =

√
NΩ.

Evaluating eg. (7.3) for |D1〉 and |D2〉 yields ΩDark = 0 and thus no coupling by the
light field. For this reason |W〉 is referred to as bright state, while the |Dj〉 are called
dark states. To describe the coherent atom light coupling it is thus sufficient to take into
account only two collective states. This reduction in the presence of strong interaction has
triggered the terminology superatom. An atom which acts like a conventional two-level
emitter but with collectively enhanced Rabi frequency.
Experimentally, the enhancement of the Rabi frequency by a factor of

√
N has been ob-

served for the first time by confining single atoms in two tightly focused optical tweezers
separated by less than a blockade radius [29, 30]. More recently, it was also investi-
gated in mesoscopic ensembles trapped in an optical lattice [160] and brought to the
Mott-insulator phase [53]. Observation in larger ensembles with dimensions extending
the blockade radius is quite challenging. Inhomogeneous density distributions lead to a
spatially varying enhancement of the Rabi frequency, which results in strong dephasing
of the oscillations [161].
In these experiments (except of [160]) the

√
N enhancement was observed by measuring

the oscillating Rydberg fraction. For the implementation of the single-photon absorber
however, yet another modification of the superatom in comparison to a normal atom
is relevant. According to eq. (4.30) the optical density the probe light experiences on a
two photon Raman transition is solely dependent on tunable parameters Ωc, ∆c and the
resonant optical density OD of the |g〉 ↔ |r〉 transition. The therefore achievable strong
coupling in combination with the reduction to effectively one single two-level atom makes
the superatom coupled to a quantized light field a promising candidate for a multitude
of quantum optics applications.
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7.1.2 Collective Rydberg excitation with damping

For the realization of a single photon absorber the strong coupling of the light field to the
atomic levels is not sufficient. After the absorption of the first photon the medium has
to be saturated to not allow the absorption of a second photon. Indeed, the excitation
blockade guarantees the absorption of only a single photon at a time, but the super-
atom can still undergo Rabi oscillations with the enhanced Rabi frequency. As the Rabi
oscillations result in a series of photon emission and absorption events, absorption of a
single photon can only be achieved by fulfilling stringent demands on the timing of the
pulse. This is incompatible with a deterministic absorber providing a high fidelity, inde-
pendent on the shape of the light pulse. In fact, it demands a mechanism damping the
Rabi-oscillations and freezing the Rydberg excitation which is created by the absorption
of the first photon. Such a scheme is proposed by J. Honer et. al. in [51].
In sec. (7.1.1) the transformation into the many-body basis composed of the collective

state |G〉, |W〉 and |Dj〉 was introduced. The fact, that on the one hand an applied
light field does not couple the many-body ground state with the N − 1 dark states, but
on the other hand the dark states carry a Rydberg fraction, suggests following scheme:
First, a light field couples ground state |G〉 and bright state |W〉 yielding both a Rydberg
excitation in the medium and the loss of a photon. Subsequently, coupling of the bright
state to the dark state |Dj〉 decouples the Rydberg excitation from the light field.
The proposal of Honer et al. demonstrates that such a controlled coupling of dark and

bright states can be introduced into the system by adding a spatially and temporally
varying detuning ∆(t) for each atom. Without going further into detail [162], these
detunings act like an effective dephasing with a rate Γn of the bright state into the
dark states. Fig. 7.2 shows results obtained by solving the Master-equation derived in
the proposal for different dephasing rates Γn, N = 16 atoms and a single atom Rabi
frequency Ω = 2π· 1 MHz. When Γn is chosen to be zero (blue line), no dephasing
occurs, the system oscillates with the collective Rabi frequency Ωcoll = 4Ω between state
|G〉 and |W〉 as discussed before. As soon as the coupling to the dark states is added,
depending on the strength of Γn three different regimes can occur in direct analogy to
a classical damped harmonic oscillator. All of these have a steady state with a high
Rydberg fraction fR in common. The amount of fR is solely determined by the number
N of atoms contributing to the superatom scaling with fR = N

N+1 [51], thus converging
against unity for N � 1. This result is in strong contrast to the damping of Rabi
oscillations originating from a single-atom decay, providing only fR = 0.5 for strong
coupling.
For Γn < Ωcoll (red line) the underdamped regime is entered. The superatom still shows

a few oscillations with decreasing amplitude before the bright state eventually completely
dephases into the dark states, such that the Rydberg excitation is decoupled from the
light field with an effective decay rate Γeff = Γn/2. On the other hand, Γn � Ωcoll
(purple line) corresponds to the overdamped regime occurring in the harmonic oscillator.
In this parameter range no oscillations show up, but the superatom only slowly evolves
into the dark states. The timescale of this evolution increases linearly with the damping
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Figure 7.2: Dephasing of collective Rabi oscillation by coupling to Dark states A
dephasing rate Γn coupling the collective bright state |W〉 with the dark states |Dj〉
results in a damping of the collective Rabi oscillations showing up in a superatom
containing N = 16 atoms. Independent on strength of Γn the Rydberg fraction
converges to fR = N/(N + 1) on long timescales. Optimum dephasing is reached
in the critically damped regime with Γn ≈ 2Ωcoll.

rate for given Ωc. Both afore mentioned regimes are not an ideal candidate for the
implementation of the single photon absorber as the reciprocal of the dephasing rate sets
a lower boundary on the required pulse duration.

Γn ≈ 2Ωcoll (yellow line) yields the optimum dephasing rate to realizing an efficient
single-photon absorber. When entering this critically damped regime dephasing into the
dark states occurs approximately on the timescale of a Rabi cycle with Ωcoll.

7.2 influence of absorption on the photon statistics

The trivial effect of a deterministic single-photon absorber onto an incident light field is
the removal of exactly one photon. This results in an impact on two other quantities,
the shape and the photon statistics of the transmitted photon pulse. While the former
is intuitive as photons are predominantly absorbed from the beginning of the pulse, the
latter requires further discussions.
For the experiments discussed in this chapter it is important to note again that the

weak probe beam is realized by strongly attenuating a laser beam. As a laser generates
coherent light, the number of photons contained in a probe pulse is underlying Poissonian
photon statistics

pk(λ) =
λk

k!
e−λ, (7.5)
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i.e. a single pulse contains an amount of k photons with a probability pk. Averaging
over all pulses results in the mean photon number λ, which can be adjusted in the
experiment by applying a rf-field with a certain power to the AOM. At the same time the
variance of the Poissonian probability distribution is equal to the mean photon number
λ, independent of any other parameters and if no drifts occur in the experiment. Any
purely probabilistic removal of photons from a light pulse does not change this relation
of mean photon number and variance. A suitable measure of the deviation of a counting
statistic from Poissonian statistics is the Mandel-Q parameter

Q =
V ar(n)

n
− 1, (7.6)

introduced by Mandel [163]. Resulting from the equality of mean value and variance
this value yields zero for a Poissonian distribution. For a more narrow distribution (sub-
Poissonian) Q becomes negative with the lower bound Q = −1 when the distribution n
consists of a single value. On the other, distributions broader than the Poissonian distri-
bution can reach arbitrarily large values of Q.

The fundamental property of a single-photon absorber is removal of exactly one photon
from a pulse, independent on the number of input photons. Using pulses with Poissonian
statistics as input, this property results in a redistribution of the probabilities pk. Zero
events occur with a probability p0,trans = p0,input + p1,input, the probability for trans-
mitting k > 1 photons is given by pk,trans = pk+1,input. Consequently, the mean photon
number after applying single photon subtraction is reduced by one. At the same time
the width of the distribution remains the same, resulting in super-Poissonian statistics
with Q > 0. Fig. 7.3 (a) visualizes this broadening for a mean input number λ = 5. The
strength of the broadening, expressed in Fig. 7.3 (b) as Q parameter, strongly depends
on the mean input photon number λ. For large λ subtraction of a single photon has
only a small impact on both width and mean value of the distribution. For very small λ
the zero photon component of the pulse which remains unchanged by the single photon
absorber is not negligible in the distribution. As a consequence the strongest change of
the photon statistics occurs around λ ≈ 1.7.
Experimentally the photon statistics can be in principle measured by evaluating the

transmitted photons in histograms and determining the width and mean number of the
distributions. However, finite detection efficiency of only 30% realized in the experiment
strongly smears out both the histograms of input and output photon number. Better con-
trast can be obtained by measuring temporal correlation functions in a Hanbury-Brown-
Twiss setup, where super-Poissonian photon statistics shows up as photon bunching.

7.3 realization of a medium blockaded by a single excitation

Stringent demand for the Rydberg-based realization of a single-photon absorber is, beside
besides the required dephasing mechanism described in sec. (7.1), an atomic cloud with a
length smaller than the blockade radius. To realize this constraint, the additional dimple
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Figure 7.3: Influence of the single photon absorber on the photon statistics (a)
Single Photon absorption (SPA) from a Poissonian input pulse reduces the mean
photon number by one. At the same time the width of the distribution remains
unchanged resulting in a super-Poissonian photon statistic. (b) Mandel Q parameter
for different mean input photon numbers. The peak value of Q appears at a mean
photon number λ ≈ 1.7

laser was added to the experimental setup (c.f. sec. (5.2.1)), allowing to reduce the length
of the cold atomic cloud in the direction of the probe light propagation. In combination
with Rydberg states with high principal quantum number n > 100 this allows to fulfill
the constraint. It turned however out that saturating the medium with a single Rydberg
excitation requires some tweaking of the parameters.
Experimental evidence that Rydberg blockade exceeds the size of the medium such

that only a single Rydberg atom can be excited, can be either found by measuring the loss
of exactly a single photon from the input pulse, or by directly measuring the amount of
Rydberg atoms via field ionization at large input photon numbers N in. To find the ideal
experimental parameters the latter one is more suited, as measuring a small number
of Rydberg atoms on a tiny background requires statistic than measuring the lack of
exactly a single photon on a large signal photon background. Fig. 7.4 the number of field
ionized Rydberg atoms for both a low input photon number N in = 3.2 (a) and a high
input photon number N in = 12.3 (b), measured by scanning the probe detuning ∆p over
the two-photon resonance ∆p = ∆c + Ω2

c
4∆c

.
In each subplot, the spectrum is measured in two-different configurations. For the

spectra shown in blue, both the crossed ODT and the dimple are switched off during the
measurement, i.e. the atoms expand in free space. The spectra shown in red on the other
hand, are measured by only switching off the crossed ODT during the measurement, but
keeping the dimple laser turned on. As a consequence, atoms which are trapped inside
the dimple beam experience a ac-Stark shift caused by the laser field. The resulting shift
can be clearly seen in the measurement at low photon number, for which the amount
of Rydberg atoms in the cloud does not saturate. While the signal with both traps
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switched off shows a maximum at ∆p = 2π· 46.6 MHz, the maximum shifts to ∆p =
2π· 47.8 MHz when the dimple is kept on. This observed value is in agreement with the
depth of the dimple calculated in sec. (5.2.1). Besides the frequency shift, the Rydberg
line measured when the dimple is kept on broadens as a result of the spatially varying
potential imposed onto the 8 µK cold atomic cloud. Therefore atoms located at different
positions experience different ac-Stark shifts.
Increasing the number of photons contained in the pulse to N in = 12.3 results in

the saturation of the number of Rydberg atoms. This causes a clear broadening of the
measured Rydberg excitation line. On top, in the spectrum measured with the dimple
turned clearly two maxima appear, one of them at the frequency corresponding to the
resonance in free space. The interpretation of this double structure is following: Loading
the dimple trap does not evaporate all atoms into the global minimum of the trap, some
atoms remain outside the dimple beam. When now large number of input photons are
sent into the medium, absorption saturates in the center of the trap, but atoms can still
be excited to the Rydberg state at positions further outside. However, since the ac-Stark
shift in the dimple is still strong enough to shift the different contributions apart from
each other, it can be used to selectively address the atoms inside the dimple only.
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Figure 7.4: Rydberg excitation inside the dimple beam Rydberg excitation spectra mea-
sured for mean photon numbers per pulse of N in = 3.2 (a) and N in = 12.3 (b).
Keeping on the dimple laser during the measurement results in an ac-Stark shift of
the Rydberg line and broadening due to the spatially varying intensity of the dimple
light. At large input photon number the spectrum broadens due to saturation of
the number of Rydberg atoms. The measurement with the dimple turned on shows
two maxima, suggesting that not all atoms are located inside the dimple.

The saturation of the spectrum measured in the dimple laser suggests that the medium
is blockaded by a single Rydberg excitation. Stronger evidence is provided by measuring
the number distribution of ionized Rydberg atoms in a single experiment shot. The
histograms resulting from measurements resonantly addressing the respective center of
the excitation line are shown in Fig. 7.5 for a measurements with both traps switched
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off (a) and with the dimple still kept on (b). For the presented measurements a photon
number of N in = 17.1 was chosen, which is far above saturation.
When both traps are switched off the measurements reveal a mean number of field

ionized Rydberg atoms of λ = 1.2. Taking into account the detection efficiency of only
28%, this yields a mean number 4.29 Rydberg atoms excited per experiment shot. This
value is of course clearly differing from 1. At the same time, the Mandel-Q parameter
calculated from the histogram according to eq. (7.6) is Q = −0.13. As a consequence,
the measured distribution of counts differs only slightly from a Poissonian distribution
with the same mean value (compare red line).

When the same measurement is performed by selecting only the atoms in the dimple
by means of the ac-Stark shift, the mean count of ionized Rydberg atoms reduces to 0.28
which corresponds to one Rydberg excitation when including the detection efficiency of
the ion detector. At the same time the Mandel-Q parameter of this measurement re-
duces to Q = −0.253 and the number of two clicks on the detector at the same time
become negligible. As the Mandel-Q parameter is reduced by a finite detection efficiency
to Q = −η this measurement reveals the full saturation of the atomic cloud by a single
Rydberg atom.

As a consequence of this result, all experiments for the single photon absorber pre-
sented in the following are carried out with the dimple trap kept on, such that a single
Rydberg atom leads to the full blockade. As a side effect, this contributes to the de-
phasing required for the damping of the Rabi oscillations, as the ac-Stark effect spatially
varies the resonance condition.

7.4 measurement of the photon nonlinearity

Having found evidence that only a single Rydberg atom can be excited with high fidelity
due to the Rydberg blockade in the atomic medium, the medium allows to study the
absorption of a single photon. A optimization of the optical density on strong absorp-
tion, results in a cloud containing 25000 atoms with a longitudinal radius of σz = 6 µm
and a transversal radius of σr = 10 µm. The temperature limited by the heating rate of
the dimple trap is 8 µK. Measuring the optical depth of this geometry by scanning the
probe frequency over the transition form the initial state |g〉 = |5S1/2,F = 2,mF = 2〉
to the intermediate state |e〉 = |5P3/2,F = 3,mF = 3〉 yields ODb = 12.5. The se-
lected Rydberg state |r〉 = |121S1/2,mJ = 1/2〉 yields a Rydberg blockade radius
rB ≈ 17 µm significantly exceeding the size of the atomic cloud. For efficient Ryd-
berg excitation, both probe and control laser are detuned from the intermediate state
by a detuning ∆c = 2π· 100 MHz. The calculated, spatially averaged probe Rabi fre-
quency is Ωp = 2π· 33

√
photons

µs kHz, while the control Rabi frequency is measured by
an EIT scan to be Ωc = 2π· 10 MHz. The resulting ac-Stark shift of the Rydberg line
is Ω2

c/4∆c = 2π· 250 kHz, which has to be taken into account for the probe detuning.
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Figure 7.5: Counting statistics of ionized Rydberg atoms (a) Histogram of the ion
counting statistic at a input photon number N in = 17 when both crossed ODT and
dimple are switched off during the experiment time. The histogram reveals a mean
count number of N counts = 1.2, corresponding to a corrected mean ion number of
N ions = 4.29, and a Mandel-Q parameter Q = −0.13. The medium is clearly not
blockaded by a single excitation. (b) Measurement for the same parameters, but
with the dimple beam switched on. The mean number of N ions = 0.28 corresponds
to exactly the excitation of exactly one Rydberg atom (within the errorbars of
the detection efficiency). At the same time the Mandel-Q parameter reduces to
Q = −0.25, close to the minimum value the parameter can have at the finite
detection efficiency in the experiment.

To study the saturation of the medium, Tukey-shaped input probe pulses with mean
photon number N in and a duration τ ≈ 2 µs are sent through the medium. The mean
number of transmitted photons Nout is measured using four avalanche single-photon
detectors (SPCM) in two Hanbury-Brown-Twiss setups (HBT). The choice of Tukey-
shaped pulses offers a tradeoff between Gaussian shaped pulses and rectangular pulses,
providing both constant Rabi frequency over almost the total duration of the pulse and
still narrow width in frequency space due to the smoothed edges. To guarantee constant
coupling to |r〉 the intensity of the control light is kept constant over the whole duration
of the probe pulses. After each pulse the presence of a Rydberg atom is probed by ap-
plying a field ionization pulse converting any Rydberg atoms into Rb+ ions which are
subsequently detected on the micro-channel plate. Additionally, this removal of Rydberg
atoms from the sample allows a fast repetition rate of the experiment. A number of 1000
individual measurements in a single MOT cycle provides fast data acquisition with the
required statistics.

Experimentally first a spectrum of the probe laser at a very small input photon number
N in = 0.2 is taken with both control laser turned on and off. At such a small photon
number the probability to find two photons in a single pulse is negligible. When the
control laser is turned on, this measurement allows to determine the probability pRyd =
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0.35 to convert a single incident probe photon into a Rydberg excitation. On the other
hand turning the control field off yields the residual probability pscatt = 0.01 to scatter
a probe photon from the intermediate state at ∆p = 2π· 100 MHz. This value is in very
good agreement to the model derived for a two-level system in sec. (4.2.1) for OD = 12.5.
For the implementation of a deterministic single photon absorber, a single photon

should be absorbed with a probability pRyd,deterministic = 1. According to eq. (4.30) the
effective optical density of the probe field on the Raman transition ODRaman can be
tuned by the experimental accessible parameters Ωc, ∆c and OD (although increasing
OD more in this trap configuration is not possible in this apparatus). However, since
the Raman induced decay rate shows the same dependence on Ωc and ∆c, the ratio of
these values has to be constant. Thus, ODRaman can only be increased by OD and subse-
quently adapting to control Rabi frequency and detuning to end up with the same value
for pscatt. As an example, OD = 70 with Ωc = 2π· 25 MHz and Ωc = 2π· 25 MHz
results in pRyd = 0.87.

Since for N in � 1 no saturation occurs, the effective dephasing rate γr = 2π· 500 kHz
can be extracted by fitting the observed Rydberg absorption line with the solution of the
Master-equation for the tree-level system including the lifetime of the Rydberg state
τRyd = 530 µs (sec. (4.3)). In fact, the Rydberg state lifetime for the experiments
is mainly determined by the spontaneous Raman decay rate γRaman =

(
Ωc
2∆c

)2
Γe =

2π· 15 kHz, corresponding to a Rydberg lifetime of τRyd,Raman = 10 µs. This value is
experimentally determined to be τRyd,Raman = 15 µs.

The measured dephasing rate γr can be assigned to three main effects occurring in
the experiment without applying additional external noise. First, thermal motion of the
atoms results in intrinsic dephasing of the bright state |W〉 [122, 164]. For fully coherent
evolution including the

√
N enhancement, the bright state |W〉 can pick up a global

phase, but the relation of the individual phases in eq. (7.1) has to remain constant.
However, at finite temperature thermal movement results in a random redistribution of
atoms. Consequently, the position of the j-th atom changes from rj to r′j = rj + vjt,
where v is the Boltzmann distributed velocity of the atom. Thus, the overlap with the
initially excited bright state diminishes over time and introduces decoherence in the atom
light coupling. By defining the thermal decoherence time τthermal as point in the time
evolution where the overlap with the initial bright state has degraded to 1/e, the thermal
decoherence rate becomes [122]

γthermal =
1

τthermal
=

2πvs
λ

. (7.7)

Here vs =
√
kBT/mRb is the average velocity of the atoms at a temperature T of the

ensemble and λ = [1/λp + 1/λc]
−1 is the wavelength corresponding to the transition

from |g〉 to |r〉. For the experimental parameters T = 8 µK and λ = 297 nm the expected
thermal decoherence rate is γthermal = 2π· 93.1 kHz.
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Second, as all experiments are performed in-trap, the two-photon resonance becomes
spatially dependent due to the trap induced ac-Stark shift. This is equivalent to inho-
mogeneous dephasing [51]. The strength of the broadening is determined by the tem-
perature of the sample, defining how far the atoms are distributed apart from the trap
center where the trapping potential is less deep. A simple estimation yields a contribution
γtrap = kBT

h̄ = 2π· 167 kHz.
Finally, elastic collisions of the Rydberg electron with ground state atoms lead to the

formation of cold atomic molecules [165]. In spectra taken at low quantum number, such
weakly bound molecules result in a series of red shifted lines corresponding to different
numbers of ground state atoms bound in the orbit of a single Rydberg atom. At large
principal quantum numbers, with n > 80, these individual molecular lines cannot be
resolved any more. The position of the Rydberg line rather experiences a red shift linear
to the atomic density [166]. As a consequence, the inhomogeneous density distribution
of the experiment causes a position dependent shift of the Rydberg line. This effect
has been explored as main dephasing effect in storage and readout experiments before
[120]. For the atomic densities on the order of 1012 cm−3 in the experiment, the resulting
dephasing rate is γdensity ≈ 2π· 100 kHz.
In combination with line broadening caused by inhomogeneities of the electric field on

the length scale of the atomic sample, the dephasing rates estimated above agree well
with the measured effective dephasing γr = 2π· 500 kHz.

The observed dephasing rate and Rydberg lifetime determine the optimal probe pulse
duration and collective Rabi frequency Ωcoll. The pulse should be longer than 1/γr, while
Ωcoll ≈ γr, to ensure that the collective excitation reliably dephases into a stationary
Rydberg excitation during the probe pulse duration [51]. At the same time, the pulse
must be short compared to the Rydberg atom lifetime, such that the initial excitation
blocks the medium for the full pulse duration. In this specific experiment, the Rydberg
lifetime is set by the spontaneous Raman decay rate γRaman due to admixture of the
intermediate state by the detuned control field. Spontaneous or black-body radiation
induced transitions as well as inelastic collisions with ground state atoms result in much
smaller decay rates for |r〉 = |121S1/2〉 and the atomic density in the experiment [167,
168].

Fig. 7.6 shows the mean number of probe photons transmitted through the atomic
medium Nout as a function of the mean input photon numbers N in per probe photon
pulse. When the control field is turned off, the probe transmission t = 1− pscatt = 0.99 is
independent of the input photon number (solid line). In contrast, when the control field is
turned on (circles), a strongly nonlinear transmission occurs. In case of weak probe input
N in < 10, the number of absorbed photons is determined by the Poissonian statistics
of the coherent probe field and the finite Rydberg absorption probability pRyd = 0.35
determined before. On the other hand for N in > 10, the mean number of transmitted
photons is reduced by one, independent of the input photon number. Averaged over all
data with N in > 10 the number of extracted photons per pulse is ∆N = 0.98(13).
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Figure 7.6: Measured photon nonlinearity The number of photons transmitted through
the medium Nout is plotted against the number of input photons N in (circles). Each
datapoint is the average of 250000 experiment repetitions. The solid line shows the
measured linear transmission when the control field is off, limited by the finite
transmission t = 0.99 of the probe field at a detuning of ∆ = 2π· 100 MHz. The
dash-dotted line shows the calculated output photon number according to eq. (7.8)
with the measured absorption probability pRyd = 0.35. The number of transmitted
photons is reduced exactly by one over a large range of input photon numbers.

A simple derivation based on the Poissonian probability distribution of photons in a
single pulse yields the expression

Nout = t·N in + exp
(
−t·N in · pRyd

)
− 1, (7.8)

which models the behaviour of a single-photon absorber with pRyd = 0.35 and t = 0.99
but otherwise ideal performance. The dash dotted line representing this expression agrees
very well with the experimental data, suggesting that the medium is indeed saturated
by a single absorption event.

To make this claim even stronger Fig. 7.7 (a)-(c) shows the corresponding statistics of
field ionized Rydberg atoms recorded with the MCP. The mean ion number N ions shown
in subplot (a) saturates at 0.28 ions per pulse at mean input photon numbers N in > 10.
This number is solely limited by the finite detection efficiency η of the MCP in the
experiment. As discussed in sec. (7.3) evaluation of the Mandel-Q parameter according
to eq. (7.6) sheds light on the quality of the blockade. The values of Q in Fig. 7.7 (b),
obtained from the number distribution of the experimental data at a given photon num-
ber N in, saturate as well for N in > 10, but in contrast to the mean ion number at −η,
which is the lower bound for a finite detection efficiency. Both the observed mean ion
counts and the Mandel-Q parameters agree very well with the results expected according
to eq. (7.8) based on the assumption that each Rydberg excitation resulting from the
absorption of a photon is subsequently converted into an ion and detected with η = 0.28.
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Finally, Fig. 7.7 (c) presents the calculated ratio of Mandel-Q parameter to mean number
of detected ions. For perfect Rydberg blockade this value should be constant at −1 for
all input photon numbers N in. Instead, the experimental data reveals a slight increase
from -0.98 at N in = 3 to -0.91 at N in = 35. This effect cannot be explained with the
simple model of eq. (7.8) permitting only the excitation of a single Rydberg atom by
absorption of a single photon.

Inclusion of a second excitation into the analytic expression of eq. (7.8) is mathemat-
ically challenging. In lieu thereof, the dashed yellow lines in Fig. 7.7 show the results of
a numerical Monte-Carlo simulation of the absorption process including the possibility
to absorb a second photon even if the medium is already blockaded. For this simulation
each pulse is assembled by an array of bins with a duration of tbin = 50 ns duration. To
each of the bins an intensity amplitude is assigned according to the envelope function of
the pulse and normalized to the mean number N in of photons contained in the pulse.
Subsequently for each bin a random Poissonian number with a mean value corresponding
to the intensity amplitude is drawn to determine the number of photons contained in a
bin. By repeating this procedure 107-times the input pulses are generated for each input
photon number.
After the generation of the pulses, the absorption is simulated by going through each

time bin of each pulse and determining for each photon individually if it is absorbed or
not by comparison of a random number against the absorption probability pRyd. With
this procedure the analytic model of eq. (7.8) can be verified. If one photon has already
been absorbed, the absorption of a second photon can now be allowed by comparing
another random number to a much smaller probability ptextRyd2. This simulation yields
the fill statistics of both the transmitted photons and the created Rydberg atoms. In
particular, the simulation reproduces the observed ratio of Mandel-Q parameter and
mean ion number for a chosen value of pRyd2 = 0.001 (orange dashed line in Fig. 7.7).
This suggests that the Rydberg blockade prevents excitation of a second Rydberg atom
with very high, but not unit, fidelity. One reasonable suspicion is that this is due to
the more complex nature of the Rydberg-Rydberg interaction than the usually assumed
single van-der-Waals potential as shown in chapter 3, resulting in resonances for two-atom
excitation within the conventional blockade volume [169, 170]. Note that the numerics
including pRyd2 = 0.001 result in negligible difference compared to eq. (7.8) for the
number of absorbed photons and excited Rydberg atoms over the shown input photon
range. This effect only becomes visible by analyzing the full ion statistics.

7.4.1 Pulse shape and Correlation

Any process which deterministically removes the first photon from a light pulse will result
in distortion of the pulse, reducing the purity of the output photon state [171]. While this
is unproblematic for applications such as number-resolved photon detection, it imposes
limits on the fidelity of photonic quantum state preparation based on photon subtraction
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Figure 7.7: Saturation of excited Rydberg atoms Full statistics of Rydberg atom detection
by field-ionization. Saturation of both the mean ion number at N ion = 0.28 and
the Mandel-Q parameter at Q = −0.28 = −η for input photon numbers N in > 10
reveal full blockade of the atomic medium by a single Rydberg excitation. Fitting
numerically simulated data (yellow line) to the ratio of Q-parameter and mean ion
number allows to determine an the probability pRyd2 = 0.001 to absorb a second
photon when the medium is already blockaded.

[152, 146, 156]. In this section the effect of the single-photon absorber is investigated by
analyzing the pulse shape and the photon-photon correlations of the output pulse.
Fig. 7.8 shows the shape of input (blue dots) and output pulses (red dots) for N in =

5.65 (a) and N in = 15.76 (b), respectively. The pulse shapes of the transmitted probe
pulses show a visible distortion as photons are predominantly absorbed in the beginning
of the pulse. In particular, for the pulses containing 15.76 photons, the transmission
increases to unity in the last third of the pulse, since at these times the probability
that one photon has already been absorbed converges to unity. For N in = 5.65 photons
this effect is less dramatic as the probability of all photons being transmitted is still
finite (∼ 14%) at this mean input photon number. The numerical simulation (red lines)
reproduce the observed pulse shapes quite well. To show that the pulse distortion becomes
more severe for higher absorption probabilities, in addition the simulated pulse shapes
for the perfect single-photon absorber with pRyd = 1 and pRyd2 = 0 (black dashed lines)
are shown. For these parameters, it is always the first photon in the pulse which is
absorbed, resulting in the stronger pulse distortion at the beginning of the pulse. This
observation has important consequences for different applications of the single-photon
absorption scheme. For efficient number-resolved photon detection by an array of single-
photon absorbers, high absorption and strong dephasing are essential [51]. In this case,
one has to keep in mind that each photon subtraction results in Fourier-broadening of
the pulse, which can reduce the efficiency of subsequent absorbers. In turn, for high-
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Figure 7.8: Influence of the absorption on the pulse shape Measured (points) and sim-
ulated (dashed lines) pulse shapes for 5.65 (a) and 15.76 (b) input photons. The
change of the medium from opaque to transparent after the absorption of the first
photon leads to a change in the transmitted pulse shape (red points) compared to
the pulse sent into the medium (blue points). This effect is captured by our numeri-
cal simulation including single- and two-photon absorption probabilities pRyd = 0.35
and pRyd2 = 0.001 (red line). The pulse distortion is strongest for an ideal deter-
ministic single-photon absorber (pRyd = 1 and pRyd2 = 0, black line).

fidelity quantum state preparation, the pulse distortion should be minimal. In principle,
the absorption in this system is tunable by OD, ∆c and Ωc, enabling adapting the single-
photon absorption probability such that the total absorption for a given photon number
reaches unity, while the information gained about which photon is absorbed is minimal.
Finally, to investigate the photon statistics of the transmitted light, the time dependent

intensity correlation function

g2(t1, t2) =
〈n1(t1)·n2(t2)〉
〈n1(t1)〉〈n2(t2)〉

(7.9)

is calculated for the transmitted probe light. Here, n1(t),n2(t) are the numbers of detec-
tion on two different detectors at time t. In practice, this intensity correlation is calculated
for each possible combination of the four counters used to detect the transmitted pho-
tons individually and then the individual results are averaged. The measured intensity
correlation for a mean input photon number N in = 15.76 is shown in Fig. 7.9 (a).
The measurement shows photon bunching, i.e. g2(t1, t2) > 1, in the time range where

the single-photon absorption happens. As discussed in sec. (7.2) this super-Poissonian
statistics results from the fact that the single-photon absorber reduces the mean of the
transmitted light by one, but keeps the width of the photon distribution constant. This
effect vanishes for the later part of the pulse, where we observe g2(t1, t2) = 1, because
the saturated medium no longer absorbs photons, resulting in no more modification of
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Figure 7.9: Influence of the absorption on the photon statistics (a) Measured inten-
sity correlation function g2(t1, t2) for mean probe photon input N in = 15.76. The
absorption of a single photon results in photon bunching at the front of the pulse,
while the photon statistics during the latter part, where the medium is transpar-
ent, are unchanged. (b) Simulated correlation functions from the numerical model
qualitatively reproduce the features observed in the experimental data, but do not
capture the full dynamics of the excitation and dephasing process.

the photon statistics of the coherent input pulse. In Fig. 7.9 (b) the simulated correlation
function obtained from the numerical simulation is shown, including the finite single- and
two-photon absorption probabilities. The simulation qualitatively reproduces the bunch-
ing feature and the change of the correlations over the pulse duration. The most visible
difference is the time when the bunching feature appears, which stems from the fact that
the numerical simulation neglects any timescale of the initial excitation and dephasing
dynamics. A more sophisticated approach, that still yields probe photon statistics, will
require calculating the dynamics of the atoms in the presence of a propagating, quantized
probe field.



8 Summary and Outlook
Summary
In the scope of this thesis, new experiments investigating the photon-photon interaction
in a Rydberg gas have been conducted. To this end, an apparatus has been built facili-
tating the achievement of huge optical nonlinearities on the level of single photons. The
experiment is based on established laser cooling techniques for neutral atoms, enabling
the creation of temperatures in the low micro-kelvin regime. Utilization of optical dipole
traps offers tunability of size and shape of the atomic medium. Combination of such a
dense atomic cloud with coherent excitation techniques like EIT and two-photon Raman
transitions, which enable the coupling of highly excited Rydberg states, allows mapping
the strong interactions of Rydberg interactions onto naturally non-interacting photons
[36, 43, 38, 51].

The first part of the thesis gave a brief introduction to the two mechanisms the ex-
periments are based on: Interactions between pairs of Rydberg atoms and transmission
properties of an atomic three-level system driven with two laser fields. Summarizing well-
established approaches a detail description of Rydberg-Rydberg interactions including
electric fields and angular dependencies has been given. By calculations based on the
gathered understanding the importance for nowadays Rydberg experiments was demon-
strated. Subsequently, the technique of electromagnetically induced transparency ren-
dering an optically dense sample from opaque to transparent and resulting in extreme
reduction of the speed of light was exemplified. The combination of these topics allowed
to develop an understanding of the Rydberg excitation blockade and its effect on the
photon propagation on EIT resonance.

In the second part, the new experimental results observed during this thesis have been
presented. A short description of the apparatus which has been built, including the
description of the applied preparation and manipulation techniques for cold atoms, in-
troduced the reader to the measurement techniques. Measurements of the extremely
nonlinear transmission through the atomic medium and anti-bunching in the photon
statistics of transmitted probe light proved the capability to conduct experiments at the
forefront of research investigating strong optical nonlinearities.
The investigation of photons coupled to Rydberg D-states in an EIT scheme allowed
to develop new insights on the topic of polariton propagation with angular dependent
interactions [49]. Measurements of the time dependent transmissions of probe photons
on EIT resonance revealed on the one hand the Rydberg interaction mediated nonlin-
earity known from Rydberg S -states [41, 37], but on top a decay of transmission over

101
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time occurred. In a series of measurements the dependence of this effect on parameters
as probe photon rate, Rabi frequency of the control field and principal quantum number
was investigated, pointing out that the decay of transmission is caused by the presence
of two-polaritons in the medium. This finding motivated the explanation of the observed
effect by interaction induced mixing of degenerate Zeeman spin states, resulting in a
decoupling of propagating polaritons from the light field and transforming the polaritons
to stationary Rydberg atoms. To model the system in a two-step approach, first dephas-
ing rates depending on both interatomic distance and angle were calculated. Comparing
them with the anisotropic Rydberg blockade radius pointed out that in contrast for Ryd-
berg S -states the dephasing for D-states is not negligible outside the Rydberg blockade.
Adding the calculated dephasing rates to numerical simulations of the polariton propaga-
tion in an three-dimensional medium yielded qualitative agreement with the experiment.
These new insights to the polariton propagation in the presence of anisotropic Rydberg
interaction are of great importance for all experiments carried out with non-S states
[40] or at Förster resonances where multiple levels are coupled. For a more profound
understanding it might be interesting to perform storage and retrieval experiments in
the future [160, 120]. Especially in a configuration of two traps side by side, this might
bring further insights to understand the dynamics of the dephasing and maybe allow to
observe revivals on a longer time scale. In such a scenario, it might become interesting
to employ echo techniques known from NMR [172] to probe the coherent spin evolution
of interacting Rydberg-polaritons.

Reduction of the cloud size by an additional dimple laser allowed to enter a new pa-
rameter regime, where the Rydberg interaction only allows for a single Rydberg atom
at the time [50]. In this situation, the indistinguishability of the atoms has to be taken
into account, as the Rydberg excitation is shared among all N atoms in the medium.
This collectivity can by accounted for by a basis transformation to a many-body basis
consisting of a collective ground state |G〉, one bright state |W〉 and N − 1 dark states
|Dj〉. Further treatment reveals, that only the |W〉 is coupled to the ground state in the
presence of a resonant light field, while the dark state are uncoupled. The time coherent
time evolution of the many-body system can thus be described by only two states, for this
reason such a system is referred to as "superatom". In principle, the driven superatom can
undergo coherent dynamics showing Rabi oscillations enhanced by a factor

√
N due to

the collectivity of the excitation. With fast engineered dephasing the Rydberg excitation
can however be decoupled from the light field by coupling the bright state to the dark
states.
Such decoupling from the light field was achieved in the experiment without introducing
further noise to the system. Dephasing rates stemming from motional dephasing due to
finite temperature of the atoms, trap induced ac-Stark shifts and molecular broadening
turned out to be strong enough for the applied Rabi frequencies. A measurement of the
transmitted photon number yielded the absorption of ∆N = 0.98(13) photons averaged
over input photon numbers with N in > 10. This measurement is a clear indication that
an absorber saturating after the absorption of a single photon was realized. For input
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photon numbers N in < 10 the absorption is limited by the Poissonian statistics of the
light field and the independently determined absorption probability pRyd = 0.35 for the
absorption of a single photon. Measurements of the full Rydberg excitation statistics af-
ter each photon pulse by means of Rydberg ionization and ion detection supported this
claim. By a numerical Monte-Carlo simulation it was shown, that a weak dependence
of the Mandel-Q parameter of the measured Rydberg statistics can be attributed to the
probability pRyd2 = 0.001 to subtract excite a second Rydberg atom, when the medium
should already be blockaded. From measurements of changes in the pulse shape and in
the photon statistics of the transmitted light conclusions on the applicability for high-
fidelity number-resolved photon-detection schemes or the preparation of non-classical
states of light for applications in quantum information [152, 146, 142, 156, 143] and
metrology [147, 151] were drawn.

Outlook
Apart from extensions of the reported experiments, like a cascaded single-photon ab-
sorber for the demonstration of a number resolved detector, the apparatus which has
been built allows investigate new rich physics based on interacting single photons.
Further optimization of the experimental apparatus resulting in lower temperatures of
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Figure 8.1: Observation of few photon Rabi oscillations (a) Measurement of the pulse
shape of the transmitted photon pulse and the time dependent number of Ryd-
berg atoms inside the medium. Both quantities oscillate with the collective Rabi
frequency Ωcoll. After the photon pulse has passed the medium, the Rydberg popu-
lation decays with γRaman. (b) Measured time dependent correlation function of the
transmitted probe light (top) and difference of input photon signal and transmitted
photon.

the atoms and the usage of a Rydberg state with lower principal quantum number has
already allowed to perform new measurements in the small cloud. As a consequence of
less motional dephasing of the superatom and lower sensitivity to stray electric fields,
the coupling of the bright to the dark states got reduced. Fig. 8.1 (a) shows both the
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transmitted photon signal and a time evolution of the number of Rydberg atoms NRyd
inside the atomic cloud. In contrast to the measurements of the single photon absorber
presented in chapter 7, both quantities show Rabi-oscillations with the collective Rabi
frequency Ωcoll. The occurrence of the Rabi oscillations at such low photon number (for
the measurements presented here the total photon number was N in = 72.6) has not been
observed up to my knowledge in free-space before. As it can be seen in the lower inset of
Fig. 8.1 (b) where the difference of input and output photon number is shown, the Rabi
oscillations can even lead to an overshoot of the transmitted photon number. Evaluating
the time-dependent intensity correlation function of the transmitted light (top panel of
Fig. 8.1 (b)) shows that the rearrangement of photons in the probe pulse also leads to
oscillations in the photon statistics of the light. As this measurements are not taken in
the EIT regime, where the light is slowed down, the correlations occur among photons
which are separated in space by tens to hundreds of meters. This emphasizes the extreme
strength of the nonlinearities achievable by mapping Rydberg interactions onto photons.
In the future it might be interesting to investigate complex many-body dynamics by

arranging several superatoms on a chain overlapping with the probe beam, such that a
coupling of all superatoms occurs.

Another future research direction is rather motivated by the discoveries found by inves-
tigating the polariton propagation with D-states. In these experiments already small de-
viations from the one-dimensional character of the system led to new effects. As a conse-
quence enlarging the probe waist in the experiment to study the propagation of polaritons
side by side to each other might open new interesting phenomena. In particular, the im-
pact of strong photon-photon interaction, for both isotropic and anisotropic, on the shape
of the transmitted probe beam might allow to discover new phenomena [173]. For such
measurements a single-photon sensitive EMCCD camera has already been bought and
tested. As illustrated in Fig. 8.2 (a), this camera could replace avalanche single photon
counters to measure both spatial and temporal correlation functions (Fig. 8.2 (b)+(c)).
Latter one might be especially of interest for investigating many-body phenomena by
drastically increasing the number of polaritons in the medium. So far, a bound state
consisting of two-photons was already measured [41], in theory also three- and many-
photon bound states should exist. Verification of these however requires the measurement
of many-photon correlation functions, which in principle requires elaborate optics and
expensive photo-detectors. Yet, this camera could be used to measure the demanded
temporal correlation functions by illuminating only one row of pixels and subsequently
exploiting the frame transfer feature of the camera to reach a high time resolution.
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Figure 8.2: Investigation of spatial and temporal photon correlations (a) Replacement
of avalanche single photon counting modules by a single-photon sensitive camera
with both spatial and temporal resolution paves the way for future experiments.
(b) The spatial resolution of the camera allows to measure the beam profile of the
transmitted probe beam which can be altered by strong interactions. Additionally it
allows to measure spatial correlation functions. (c) By exploiting the frame transfer
feature of the camera, it could be used instead of multiple single photon counters
for fast photon counting and measurements of many-photon correlation functions.





A Apparatus for quantum optics
experiments in cold atomic gases

a.1 vacuum chamber and laser beams
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Figure A.1: Apparatus constructed for the experiments This drawing gives an overview
of the setup described in chapter 5
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a.2 electric field control and ion detection
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Figure A.2: Assembly of electric field control and ion detection This stainless steel
construction is used in the experiment to control the electric field at the position
of the atomic cloud. The field plates labeled by the numbers 1 to 8 are individu-
ally addressable, such that arbitrary electric fields can be generated in the center.
For high temporal stability the voltages are provided by a stable voltage source
(Measurement computing MC-USB3100 series). Additionally, the field plates 2 and
6 can be pulsed to a high voltage of up to 500 V to ionize Rydberg atoms. Fast
pulsing is provided by a CGC NIM-AMX500-3 switch in combination with a Ap-
pliedKilovolts HP0.5PAA025 power supply. After ionization with a positive voltage
pulse, ions are flying towards the multichannel (Hamamatsu F4655-13 MCP) plate
12+13. For maximum detection efficiency the ions can be guided by applying a
steering voltage to the field plates 9+10.



B Rydberg potential calculations
This appendix briefly discusses the steps required to construct the matrix elements the
Hamiltonian (3.2) in the interaction potential calculation. To this end, both the energies
of the Rydberg levels according to eq. (3.1) and the matrix elements of the single-atom
electric multipole operators p̂κq in eq. (3.8) have to be calculated.

b.1 rydberg energy levels and wave functions

When considering Rydberg atoms with one of their electrons excited to a large principal
quantum number n � 1, the atoms behave very similar to a hydrogen atom, as the
Z − 1 inner electrons screen the charge Z of the nucleus such that the Rydberg electron
effectively moves in a slightly modified Coulomb potential. Reduction of the problem
to the single Rydberg electron is in particular valid for Alkali atoms, where the inner
electrons form closed shells, but also justified for other atomic species, such as the noble
gases [174], the alkaline earth metals [175], and even the lanthanides [176] if the principal
quantum number n is large enough.

b.1.1 Rydberg energies

This treatment results in the expression

EnLJ = −hcR
∗

n∗2
, (B.1)

for the binding energy of the Rydberg series, in total analogy to the hydrogen atom. The
term

R∗ =
1

1 +me/Matom
R∞ (B.2)

is a modified Rydberg constant, taking into account the species dependent massMatom of
the atomic core. On top, species-dependent deviations from the hydrogen atom are taken
into account by the effective, non-integer principal quantum number n∗. The correspond-
ing values can be obtained from the main principal quantum number n by introducing
the species-dependent quantum defects δnLJ , which are written in a series expansion of
the form

δnlj = δ0 +
δ2

(n− δ0)2 +
δ4

(n− δ0)4 +
δ6

(n− δ0)6 + · · · . (B.3)
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The coefficients in this polynomial expression are obtained from fits to experimentally
measured transition energies for specific species. The fine-structure splitting is usually
included in the quantum defects, resulting in the dependence on the quantum number
J . The quantum defects decrease rapidly with increasing orbital angular momentum L,
since for high-L states the electron is localized further out such that the influence of the
non-hydrogenic core becomes less relevant. As a consequence, for L > 3 the energies of
the levels follows the analytic expression known form Hydrogen

EnLJ = −hcR
∗

n2

(
1 + α2

n(J + 1/2) +
α2

n2

)
− e2

(4πε0)2a4
0

3αd
4n3L5 , (B.4)

including a correction term proportional to the core species-dependent polarizability αd
[106].

b.1.2 Rydberg electron wave function

Having found the energies required for the Hamiltonian (3.2), the missing quantities are
the matrix elements of the single-atom electric multipole operators p̂κq in eq. (3.8). Their
calculation requires the wave functions of the single electron orbiting around the screened
nucleus. Even though the core potential becomes more complicated for non-hydrogenic
atom, the spherical symmetry of the problem is conserved, such that the separation of
the wave function

ψ(r,ϑ,ϕ) = RnLJ (r)·YLSJmJ
(ϑ,ϕ), (B.5)

into a radial part RnLJ (r) and an angular part YLSJmJ
(ϑ,ϕ) justified. Including the

fine-structure, the analytic expression of the spin spherical harmonics is [77]

YJ± 1
2 , 1

2 ,j,mJ
=

1√
2
(
J ± 1

2

)
+ 1

 ∓
√
J ± 1

2 ∓mJ +
1
2YJ± 1

2 ,mJ− 1
2√

J ± 1
2 ±mJ +

1
2YJ± 1

2 ,mJ+
1
2

 . (B.6)

Based on this expression, the angular part of the electric multipole moments can be
calculated analytically, including the usual multipole selection rules, discussed in detail
in B.3.
For the radial part RnLJ non-relativistic quantum defect theory provides analytical

solutions, known as Coulomb functions [177, 61]. The basic idea is to consider large
distances r from the nucleus, where the screening of the inner electrons results in an
effective core charge Z = 1. There, the radial Schrödinger equation reduces to the well-
known hydrogen case, except that the energy eigenvalues of the bound states are fixed
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via the experimentally determined quantum defects. As a consequence, the resulting
solutions depend on the (non-integer) effective principal quantum number n∗:

Rn∗LJ (r) =
( 1
a0

)3/2 1√
(n∗)2Γ(n∗ + L+ 1)Γ(n∗ −L)

Wn∗,L+1/2

(
2r
n∗a0

)
. (B.7)

Here, Γ(z) is the Gamma function, andWk,m(z) the Whittaker function. The Coulomb
functions are obtained by solving the hydrogen Coulomb radial equation where the ener-
gies corresponding to non-integer principal quantum numbers have already been inserted.
These are approximate wave functions with the correct behavior for large r and the right
binding energy. For the calculation of transition matrix elements between Rydberg states,
these are the important criteria. A relativistic generalization of the quantum-defect the-
ory exists [178], but for the high-n Rydberg states of interest here, the modification of
the radial wave function due to the fine-structure correction turns out to be negligible.
An alternative approach to obtaining single-electron wave functions is numerically solv-

ing the radial Schrödinger equation including a species-dependent model potential [179].
Compared to quantum-defect theory this approach enables calculation of wave functions
in the inner region, if the model potentials were correctly determined. Typically, the
model potential contains three contributions:

Vmod(r) = VC(r) + VP(r) + Vs.o.(r). (B.8)

Here,

VC(r) = −
e2

4πε0

1 + (Z − 1)e−α1r − r(α3 + α4r)e−α2r

r
, (B.9)

is a modified Coulomb potential describing the distance dependent screening of the nu-
cleus charge by the inner electrons [180]. The coefficients α1,2,3,4 depend on the atomic
species and the orbital angular momentum L [180].

VP(r) = −
e2

(4πε0)2
αd
2r4

[
1− e−(r/rc)

6
]

(B.10)

describes the core polarizability as a consequence of the deformation of the core charge
distribution by the Rydberg electron. Here, αd is the core dipole polarizability (higher
terms can also be included [179]) and rc is the effective core size, obtained by comparing
the numerical solutions with the experimentally observed energy levels. Finally,

Vs.o.(r > rc) =
1
2

(
e2

4πε0

)(
gs

2m2
ec

2

)
L · S
r3 . (B.11)

adds the spin-orbit coupling [181]. This expression is only valid for large r and for smaller
distances from the core the full expression derived from the Dirac equation has to be
taken into account [179].
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Figure B.1: Comparison of radial Rydberg wave functions obtained via numerical integration of
the Schrödinger equation including the model potential (B.8) (dashed red line) and
the corresponding Coulomb wave functions (B.7) (blue line). The different results
agree very well, however the calculation of the numerical wave functions requires
much less computation time.

The spin-orbit interaction Vso depends on the radial coordinate r, thus the numerical
radial wave function depends on the total angular momentum j. In practice, one usually
does not solve the radial Schrödinger equation as eigenvalue problem, but instead inserts
the level energies determined from experimental quantum defects (B.4). Here, care must
be taken when combining model potentials (e.g. from [180]) with independently measured
quantum defects, since the inserted energies most likely are not eigenenergies of the model
potential. Improvements to the model potentials including the fine structure term have
recently been discussed by Sanayei et al. [182].
Fig. B.1 compares wave functions derived via numerical integration and the corre-

sponding Coulomb wave functions. The analytic Coulomb wave functions only indirectly
include spin-orbit coupling and the modifications of the Coulomb potential from the sim-
ple hydrogen case via the quantum defects, while the model potential explicitly includes
these effects in the Hamiltonian. For large n, and even more for large L, the overlap
of the Rydberg electron with the core region is vanishingly small, making the Coulomb
functions very accurate solutions. However, the numerical integration has the advantage,
that state of the art numerical methods provide fast solving routines for the differential
equation. On the other hand, the Whittaker functions are usually expressed in terms of
hypergeometric functions and thus have to be evaluated by converging a power series,
which is computationally intense.

b.2 radial matrix elements

Calculating the radial parts of the electric multipole matrix elements appearing in the
interaction Hamiltonian ((3.7) in sec. (3.2)) amounts to solving integrals of the form

〈nLJ |p̂radκ |n′L′J ′〉 =
∫
RnLJ (r)Rn′L′J ′(r)r

2+κ dr, (B.12)
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where RnLJ (r) are the radial wave functions discussed in B.1, obtained either numerically
or in the form of Coulomb functions (B.7), and κ is the order of the multipole operator
(3.8) in sec. (3.2). Note, that the radial wave functions obtained by either approach
are real, so that the complex conjugation in the matrix element can be omitted. The
matrix elements can be straightforwardly calculated by numerical integration [177, 183].
To optimize the numerics, it is useful to rescale the radial coordinate and the wave
functions according to

x =
√
r , Xrad

nLJ (x) = x3/2RnLJ (r). (B.13)

This scaling keeps the number of grid points between nodes of the wave function con-
stant [184]. As an alternative to numerical integration, various analytical expressions for
electric dipole matrix elements exist [184, 185, 186]. In Fig. B.2, electric dipole matrix
elements obtained from numerical integration either using Coulomb functions or model
potential wave functions and evaluation of the analytical expression in [186] are com-
pared. For transitions between low-L states the three approaches produce remarkable
agreement for n > 40. For high-L transitions there are systematic deviations between
the results of the model potential and the other two approaches, but the relative differ-
ence remains smaller than 1%.
It is important to note that the rather simple methods of calculating single-electron

wave functions only yield accurate results for n > 30. Significantly more advanced meth-
ods for calculating energy levels and matrix elements than the ones presented here have
been developed for low-n states, see e.g. [187, 188].

b.3 angular matrix elements

In addition to the radial part discussed in B.2, the angular part of the electric multipole
matrix elements is needed to construct the Hamiltonian (3.2). This appendix reviews the
general formalism to calculating matrix elements of spherical tensor operators, which can
be applied to determining the angular parts appearing when the multipole operators are
expressed in the spherical basis [189]. The formalism relies on the Wigner-Eckart theorem
[81], which states that matrix elements of spherical tensor operators T̂κq can be expressed
as products of Wigner 3-j symbols and a reduced matrix element, which is independent
of the angular momentum orientation. When the calculations are preformed in the fine-
structure basis, the Wigner-Eckart theorem for the total angular momentum J = L+ S

reads

〈LSJmJ |T̂κq|L′S′J ′m′J〉 = (−1)J−mJ (LSJ ||T̂κ0||L′S′J ′)

J κ J ′

−mJ q m′J

 , (B.14)

where (LSJ ||T̂κ0||L′S′J ′) is the reduced matrix element for the total angular momentum.
In particular, the spherical tensor operators required for the matrix elements of the p̂κq
(eq. (3.8)) are the spin-spherical harmonics Ŷκq(ϑ̂, ϕ̂), commuting with the electron spin
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Figure B.2: Comparison of dipole matrix elements calculated by numeric integration using ei-
ther Coulomb functions or model potential wave functions with the analytic expres-
sion from [186]. (a)+(c) show dipole matrix elements for the n,L = 0, J = 1/2↔
n′ = n,L′ = 1, J ′ = 3/2 transition and the relative difference between the three
different approaches. All three methods are in very good agreement for the Ryd-
berg states of interest here. (b)+(d) show dipole matrix elements for transitions
from n,L = n− 1, J = L+ 1/2↔ n′ = n,L′ = n− 2, J ′ = L′ + 1/2 calculated for
different principle quantum numbers and their relative difference. For transitions
between high-L states a more significant systematic deviation between the result
based on model potential wave functions and the other two approaches can be
observed.

S. In this case, different reduced matrix elements can than be related via the expression

(LSJ ||Ŷκ0||L′SJ ′) = (−1)L+S+J
′+κ(L||Ŷκ0||L′)

√
(2J + 1)(2J ′ + 1)

L J S

J ′ L′ κ

 ,

(B.15)

where the last term is the Wigner 6-j symbol. The value of the relevant reduced matrix
element is

(L||Ŷκ0||L′) = (−1)L
√
(2L+ 1)(2κ+ 1)(2L′ + 1)

4π

L κ L′

0 0 0

 . (B.16)
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