3 research outputs found

    Separated Siamese Twins: Intronic Small Nucleolar RNAs and Matched Host Genes May be Altered in Conjunction or Separately in Multiple Cancer Types

    Get PDF
    Small nucleolar RNAs (snoRNAs) are non-coding RNAs involved in RNA modification and processing. Approximately half of the so far identified snoRNA genes map within the intronic regions of host genes, and their expression, as well as the expression of their host genes, is dependent on transcript splicing and maturation. Growing evidence indicates that mutations and/or deregulations that affect snoRNAs, as well as host genes, play a significant role in oncogenesis. Among the possible factors underlying snoRNA/host gene expression deregulation is copy number alteration (CNA). We analyzed the data available in The Cancer Genome Atlas database, relative to CNA and expression of 295 snoRNA/host gene couples in 10 cancer types, to understand whether the genetic or expression alteration of snoRNAs and their matched host genes would have overlapping trends. Our results show that, counterintuitively, copy number and expression alterations of snoRNAs and matched host genes are not necessarily coupled. In addition, some snoRNA/host genes are mutated and overexpressed recurrently in multiple cancer types. Our findings suggest that the differential contribution to cancer development of both snoRNAs and host genes should always be considered, and that snoRNAs and their host genes may contribute to cancer development in conjunction or independently

    Ribosome biogenesis and cancer

    No full text
    There is growing evidence indicating that the human pathological conditions characterized by an up-regulated ribosome biogenesis are at an increased risk of cancer onset. At the basis of this relationship is the close interconnection between the ribosome biogenesis and cell proliferation. Cell proliferation-stimulating factors also stimulate ribosome production, while the ribosome biogenesis rate controls the cell cycle progression. The major tumour suppressor, the p53 protein, plays an important balancing role between the ribosome biogenesis rate and the cell progression through the cell cycle phases. The perturbation of ribosome biogenesis stabilizes and activates p53, with a consequent cell cycle arrest and/or apoptotic cell death, whereas an up-regulated ribosome production down-regulates p53 expression and activity, thus facilitating neoplastic transformation. In the present review we describe the interconnection between ribosome biogenesis and cell proliferation, while highlighting the mechanisms by which quantitative changes in ribosome biogenesis may induce cancer

    Strategies to Restore Adenosine Triphosphate (ATP) Level After More than 20 Hours of Cold Ischemia Time in Human Marginal Kidney Grafts

    No full text
    BACKGROUND The persisting organ shortage in the field of transplantation recommends the use of marginal kidneys which poorly tolerate ischemic damage. Adenosine triphosphate (ATP) depletion during cold ischemia time (CIT) is considered crucial for graft function. We tested different strategies of kidney perfusion before transplantation in the attempt to improve the technique. MATERIAL AND METHODS Twenty human discarded kidneys from donors after brain death and with at least 20 hours of CIT were randomized to the following experimental groups (treatment time three-hours at 4\ub0C): a) static cold storage (CS); b) static cold hyperbaric oxygenation (Hyp); c) hypothermic perfusion (PE); d) hypothermic perfusion in hyperbaric oxygenation (PE-Hyp); and e) hypothermic oxygenated perfusion (PE-O2). RESULTS Histological results showed that perfusion with or without oxygen did not produce any endothelial damage. A depletion of ATP content following the preservation procedure was observed in CS, PE, and Hyp, while PE-Hyp and PE-O2 were associated with a net increase of ATP content with respect to baseline level. In addition, PE-Hyp was associated with a significant downregulation of endothelial isoform of nitric oxide synthase (eNOS) gene expression and of hypoxia inducible factor-1\u3b1 (HIF-1\u3b1). CONCLUSIONS Hyperbaric or normobaric oxygenation with perfusion improves organ metabolic preservation compared to other methods. This approach may prevent the onset of delayed graft function, but clinical trials are needed to confirm this
    corecore