14 research outputs found
T-1018 UCLA Spacordion Tungsten Powder Calorimeter
The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics departments. This test run if a proof-of-principle and allows the experiment to improve the design and performance of the final detectors. The experimenters have constructed prototypes of three different designs in order to investigate the characteristics of practical devices such as uniformity, linearity, longitudinal and transverse shower shapes. The first design is an array of 4 x 4 modules intended as a prototype for a practical device to be installed within two years in the STAR experimental hall. The modules are a combination of a spaghetti calorimeter and an accordion (hence 'spacordion'). Each sub-module is 1.44 cm x 1.44 cm x 15 cm and constructed individually. The second design is a prototype of 4 sub-modules constructed in one step, using a different construction technique. The third design is a set of single sub-modules each intended to test variations of the tungsten powder/embedded fiber concept by enhancing the light output/density using liquid scintillator or heavy liquids
Carbon Isotope Fusion
The 13C + 13C total fusion cross section has been determined in the range 3.26 ≤ Ec.m. ≤ 8.0 MeV using Ge(Li) detector measurements of low-lying transitions in the residual nuclei and a statistical model calculation of excited state populations. Six different residual nuclei have been observed and their production yields are given. To constrain the parameters in fusion models for these reactions, we have also taken elastic scattering data at υc.m. = 60°, 70°, 80°, and 90° for 4.5 ≤ Ec.m. ≤ 8.5 MeV, as well as angular distributions at Ec.m. = 7 and 8 MeV. The relationship of low energy scattering and reaction cross sections among the carbon isotopes is discussed.</p
The mu polarimeter for experiment SMC at CERN SPS
Baum G, Bueltmann SL, Thiel W, et al. The mu polarimeter for experiment SMC at CERN SPS. In: Adriatico Research Conference On Polarization Dynamics In Nuclear And Particle Physics. 1992
Isolation of flow and nonflow correlations by two- and four-particle cumulant measurements of azimuthal harmonics in √sNN = 200 GeV Au+Au collisions
A data-driven method was applied to Au+Au collisions at √sNN = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance η-dependent and η-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a η-independent component of the correlation, which is dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η within the measured range of pseudorapidity |η| 0.7
Direct virtual photon production in Au+Au collisions at √sNN = 200 GeV
We report the direct virtual photon invariant yields in the transverse momentum ranges 1 6 GeV/c the production follows T A A scaling. Model calculations with contributions from thermal radiation and initial hard parton scattering are consistent ithin uncertainties with the direct virtual photon invariant yield
Energy dependence of J/ψ production in Au+Au collisions at √sNN=39,62.4 and 200GeV
The inclusive J/ψ transverse momentum spectra and nuclear modification factors are reported at midrapidity (|y| < 1.0) in Au+Au collisions at √sN N = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J/ψ production, with respect to the production in p + p scaled by the number of binary nucleon–nucleon collisions, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J/ψ production due to the color screening effect and J/ψ regeneration from recombination of uncorrelated charm–anticharm quark pairs
Measurement of groomed jet substructure observables in p+p collisions at √s=200 GeV with STAR
In this letter, measurements of the shared momentum fraction (zg) and the groomed jet radius (Rg), as defined in the SoftDrop algorithm, are reported in p+p collisions at √s = 200 GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from R = 0.2 − 0.6 in the transverse momentum range 15 < pT,jet < 60 GeV/c. These studies show that, in the pT,jet range accessible at √s = 200 GeV and with increasing jet resolution parameter and jet transverse momentum, the zg distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the pT,jet, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both zg and Rg, resulting in opportunities for fine parameter tuning of these models for p+p collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high pT,jet, but fail at small jet resolution parameters and low jet transverse momenta