6 research outputs found

    Application of 13C flux analysis to determine impacts of media alterations on industrial CHO cell metabolism

    Get PDF
    Industrial bioprocesses place extraordinary demands on the metabolism of host cells to meet the biosynthetic requirements for maximal growth and protein production. Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. 13C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying stable isotope tracers to map the flow of carbon through intracellular metabolic pathways. We have conducted a series of 13C MFA studies to examine the metabolic impacts of altering the composition of a proprietary chemically defined growth medium on CHO cell metabolism. CHO cell cultures characteristically produce excess ammonia and lactate as byproducts, both of which are toxic at high concentrations. Whereas lactate is often consumed during stationary growth phase in CHO cell cultures, ammonia continues to accumulate in the extracellular media throughout the course of cell growth due mainly to glutamine catabolism. For CHO cells that utilize glutamine, rational media design can alleviate ammonia stress from the cell culture. However, manipulating carbon sources in the growth medium can also have negative effects on cellular metabolism such as decreased culture growth, viability, recombinant protein productivity, or longevity. This study highlights a rationally engineered cell culture medium that successfully reduces culture ammonia levels by 40% while maintaining the original metabolic phenotype. First, the basal media developed in-house by Sanofi was chemically altered to cause CHO cells to produce significantly less ammonia byproduct. This low ammonia-producing media variant was experimentally developed by altering the ratio of carbon sources in the media to strategically reduce flux through metabolic pathways that result in ammonia production while supplementing complementary, non-ammonia producing pathways to balance metabolism. This altered media variant successfully decreased the ammonia concentration in industrial CHO while maintaining culture growth, viability, and specific productivity. Parallel 13C MFA studies were performed on IgG-producing CHO cells grown identically in three media variants: the basal control media, the low-ammonia media, and the low-ammonia media supplemented with basal ammonia levels. The latter media was used to control for any direct effects of changing ammonia concentrations on cellular metabolism. 13C labeling studies utilizing [U-13C5]glutamine and [1,213C2]glucose were carried out in parallel for each condition. From the comparison of the 13C flux analysis across the three media types, we have concluded that the media alterations did not have a significant impact on the intracellular metabolism of CHO cultures. This suggests that Sanofi can use their newly developed media formulation to decrease toxic ammonia buildup in IgG-producing CHO cell lines without significantly altering host metabolic phenotype or productivit

    Network Modeling of Liver Metabolism to Predict Plasma Metabolite Changes During Short-Term Fasting in the Laboratory Rat

    Get PDF
    The liver—a central metabolic organ that integrates whole-body metabolism to maintain glucose and fatty-acid regulation, and detoxify ammonia—is susceptible to injuries induced by drugs and toxic substances. Although plasma metabolite profiles are increasingly investigated for their potential to detect liver injury earlier than current clinical markers, their utility may be compromised because such profiles are affected by the nutritional state and the physiological state of the animal, and by contributions from extrahepatic sources. To tease apart the contributions of liver and non-liver sources to alterations in plasma metabolite profiles, here we sought to computationally isolate the plasma metabolite changes originating in the liver during short-term fasting. We used a constraint-based metabolic modeling approach to integrate central carbon fluxes measured in our study, and physiological flux boundary conditions gathered from the literature, into a genome-scale model of rat liver metabolism. We then measured plasma metabolite profiles in rats fasted for 5–7 or 10–13 h to test our model predictions. Our computational model accounted for two-thirds of the observed directions of change (an increase or decrease) in plasma metabolites, indicating their origin in the liver. Specifically, our work suggests that changes in plasma lipid metabolites, which are reliably predicted by our liver metabolism model, are key features of short-term fasting. Our approach provides a mechanistic model for identifying plasma metabolite changes originating in the liver

    Toxicant-Induced Metabolic Alterations in Lipid and Amino Acid Pathways Are Predictive of Acute Liver Toxicity in Rats

    No full text
    Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity

    xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression

    No full text
    Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC

    The TLR4 Agonist Monophosphoryl Lipid a Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism

    No full text
    Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection. The Journal of Immunology, 2018, 200: 3777–3789
    corecore