135 research outputs found

    Complete genome sequence of a Staphylococcus epidermidis bacteriophage isolated from the anterior nares of humans

    Get PDF
    We report here the complete genome sequence of a virulent Staphylococcus epidermidis siphophage, phage 6ec, isolated from the anterior nares of a human. This viral genome is 93,794 bp in length, with a 3' overhang cos site of 10 nucleotides, and it codes for 142 putative open reading frames

    Characterization of prophages of Lactococcus garvieae

    Get PDF
    This report describes the morphological characterization and genome analysis of an induced prophage (PLg-TB25) from a dairy strain of Lactococcus garvieae. The phage belongs to the Siphoviridae family and its morphology is typical of other lactococcal phages. A general analysis of its genome did not reveal similarities with other lactococcal phage genomes, confirming its novelty. However, similarities were found between genes of its morphogenesis cluster and genes of Gram-positive bacteria, suggesting that this phage genome resulted from recombination events that took place in a heterogeneous microbial environment. An in silico search for other prophages in 16 L. garvieae genomes available in public databases, uncovered eight seemingly complete prophages in strains isolated from dairy and fish niches. Genome analyses of these prophages revealed three novel L. garvieae phages. The remaining prophages had homology to phages of Lactococcus lactis (P335 group) suggesting a close relationship between these lactococcal species. The similarity in GC content of L. garvieae prophages to the genomes of L. lactis phages further supports the hypothesis that these phages likely originated from the same ancestor

    Genome Sequence of SN1, a Bacteriophage That Infects \u3ci\u3eSphaerotilus natans\u3c/i\u3e and \u3ci\u3ePseudomonas aeruginosa\u3c/i\u3e

    Get PDF
    Phage SN1 infects Sphaerotilus natans and Pseudomonas aeruginosa strains. Its genome consists of 61,858 bp (64.3% GC) and 89 genes, including 32 with predicted functions. SN1 genome is very similar to Pseudomonas phage M6, which contains hypermodified thymidines. Genome analyses revealed similar base-modifying genes as those found in M6. Phage SN1 was isolated in 1979 from activated sludge samples obtained from a wastewater treatment plant (Lincoln, Nebraska, USA) using S. natans ATCC 13338 as the host (1, 2). An early study showed that the siphophage SN1 has unusual bases in its genome as confirmed by cellulose thin-layer chromatography (1). Its genomic DNA also showed resistance to type II restriction endonucleases (2). Host range studies indicate that phage SN1 can also infect Pseudomonas aeruginosa strains PAO33 and OT684 (2). Here, phage SN1 was amplified with its host S. natans ATCC 13338 in nutrient broth (3 g/L beef extract, 5 g/L peptone) and agitated at 30°C (2). Cell debris were removed by filtration (0.45 mm) and filtrates were stored at 4°C until use. Phage SN1 also infected P. aeruginosa PAO1 (HER1153) in TSB/TSA medium at 30°C using both plaque assays and lysis of liquid cultures. Species identification of the above two host strains was confirmed by 16S sequencing

    Genome Sequence of SN1, a Bacteriophage That Infects \u3ci\u3eSphaerotilus natans\u3c/i\u3e and \u3ci\u3ePseudomonas aeruginosa\u3c/i\u3e

    Get PDF
    Phage SN1 infects Sphaerotilus natans and Pseudomonas aeruginosa strains. Its genome consists of 61,858 bp (64.3% GC) and 89 genes, including 32 with predicted functions. SN1 genome is very similar to Pseudomonas phage M6, which contains hypermodified thymidines. Genome analyses revealed similar base-modifying genes as those found in M6

    Lactobacillli expressing llama VHH fragments neutralise Lactococcus phages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteriophages infecting lactic acid bacteria (LAB) are widely acknowledged as the main cause of milk fermentation failures. In this study, we describe the surface-expression as well as the secretion of two functional llama heavy-chain antibody fragments, one binding to the major capsid protein (MCP) and the other to the receptor-binding proteins (RBP) of the lactococcal bacteriophage p2, by lactobacilli in order to neutralise lactococcal phages.</p> <p>Results</p> <p>The antibody fragment VHH5 that is directed against the RBP, was fused to a c-<it>myc </it>tag and expressed in a secreted form by a <it>Lactobacillus </it>strain. The fragment VHH2 that is binding to the MCP, was fused to an E-tag and anchored on the surface of the lactobacilli. Surface expression of VHH2 was confirmed by flow cytometry using an anti-E-tag antibody. Efficient binding of both the VHH2 and the secreted VHH5 fragment to the phage antigens was shown in ELISA. Scanning electron microscopy showed that lactobacilli expressing VHH2 anchored at their surface were able to bind lactococcal phages. A neutralisation assay also confirmed that the secreted VHH5 and the anchored VHH2 fragments prevented the adsorption of lactococcal phages to their host cells.</p> <p>Conclusion</p> <p>Lactobacilli were able to express functional VHH fragments in both a secreted and a cell surface form and reduced phage infection of lactococcal cells. Lactobacilli expressing llama heavy-chain antibody fragments represent a novel way to limit phage infection.</p

    Characterization of two polyvalent phages infecting Enterobacteriaceae

    Get PDF
    Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses revealed that phage SH6 belongs to the T1virus genus of the Siphoviridae family. Conversely, phage SH7 was classified in the T4virus genus of the Myoviridae family. Phage SH6 had a short latent period of 16 min and a burst size of 103 ± 16 PFU/infected cell while the phage SH7 latent period was 23 min with a much lower burst size of 26 ± 5 PFU/infected cell. Moreover, phage SH6 was sensitive to acidic conditions (pH < 5) while phage SH7 was stable from pH 3 to 11 for 1 hour. Of the 35 bacterial strains tested, SH6 infected its S. flexneri host strain and 8 strains of E. coli. Phage SH7 lysed additionally strains of E. coli O157:H7, Salmonella Paratyphi, and Shigella dysenteriae. The broader host ranges of these two phages as well as their microbiological properties suggest that they may be useful for controlling bacterial populations
    • …
    corecore