17 research outputs found
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
A lower bound on the mass of Dark Matter particles
We discuss the bounds on the mass of Dark Matter (DM) particles, coming from
the analysis of DM phase-space distribution in dwarf spheroidal galaxies
(dSphs). After reviewing the existing approaches, we choose two methods to
derive such a bound. The first one depends on the information about the current
phase space distribution of DM particles only, while the second one uses both
the initial and final distributions. We discuss the recent data on dSphs as
well as astronomical uncertainties in relevant parameters. As an application,
we present lower bounds on the mass of DM particles, coming from various dSphs,
using both methods. The model-independent bound holds for any type of fermionic
DM. Stronger, model-dependent bounds are quoted for several DM models (thermal
relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The
latter bounds rely on the assumption that baryonic feedback cannot
significantly increase the maximum of a distribution function of DM particles.
For the scenario in which all the DM is made of sterile neutrinos produced via
non-resonant mixing with the active neutrinos (NRP) this gives m_nrp > 1.7 keV.
Combining these results in their most conservative form with the X-ray bounds
of DM decay lines, we conclude that the NRP scenario remains allowed in a very
narrow parameter window only. This conclusion is independent of the results of
the Lyman-alpha analysis. The DM model in which sterile neutrinos are
resonantly produced in the presence of lepton asymmetry remains viable. Within
the minimal neutrino extension of the Standard Model (the nuMSM), both mass and
the mixing angle of the DM sterile neutrino are bounded from above and below,
which suggests the possibility for its experimental search.Comment: 20 pages, published in JCA
A MODEST review
We present an account of the state of the art in the fields explored by the
research community invested in 'Modeling and Observing DEnse STellar systems'.
For this purpose, we take as a basis the activities of the MODEST-17
conference, which was held at Charles University, Prague, in September 2017.
Reviewed topics include recent advances in fundamental stellar dynamics,
numerical methods for the solution of the gravitational N-body problem,
formation and evolution of young and old star clusters and galactic nuclei,
their elusive stellar populations, planetary systems, and exotic compact
objects, with timely attention to black holes of different classes of mass and
their role as sources of gravitational waves.
Such a breadth of topics reflects the growing role played by collisional
stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next
decade, many revolutionary instruments will enable the derivation of positions
and velocities of individual stars in the Milky Way and its satellites and will
detect signals from a range of astrophysical sources in different portions of
the electromagnetic and gravitational spectrum, with an unprecedented
sensitivity. On the one hand, this wealth of data will allow us to address a
number of long-standing open questions in star cluster studies; on the other
hand, many unexpected properties of these systems will come to light,
stimulating further progress of our understanding of their formation and
evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and
Cosmology'. We are much grateful to the organisers of the MODEST-17
conference (Charles University, Prague, September 2017). We acknowledge the
input provided by all MODEST-17 participants, and, more generally, by the
members of the MODEST communit