1,033 research outputs found
Topological versus rheological entanglement length in primitive path analysis protocols
Primitive path analysis algorithms are now routinely employed to analyze
entanglements in computer simulations of polymeric systems, but different
analysis protocols result in different estimates of the entanglement length,
N_e. Here we argue that standard PPA measures the rheological entanglement
length, typically employed by tube models and relevant to quantitative
comparisons with experiment, while codes like Z or CReTA also determine the
topological entanglement length. For loosely entangled systems, a simple
analogy between between phantom networks and the mesh of entangled primitive
paths suggests a factor of two between the two numbers. This result is in
excellent agreement with reported values for poly-ethylene, poly-butadiene and
bead-spring polymer melts.Comment: 3 pages, no figure
Net energy analysis of solar and conventional domestic hot water systems in Melbourne, Australia
It is commonly assumed that solar hot water systems save energy and reduce greenhouse gas emissions. Very rarely has the life-cycle energy requirements of solar hot water systems been analysed, including their embodied energy. The extent to which solar hot water systems save energy compared to conventional systems in Melbourne, Australia, is shown through a comparative net energy analysis. The solar systems provided a net energy saving compared to the conventional systems after 0.5 to 2 years, for electricity and gas systems respectively.<br /
Thermal Fluctuations and Rubber Elasticity
The effects of thermal elastic fluctuations in rubber materials are examined.
It is shown that, due to an interplay with the incompressibility constraint,
these fluctuations qualitatively modify the large-deformation stress-strain
relation, compared to that of classical rubber elasticity. To leading order,
this mechanism provides a simple and generic explanation for the peak structure
of Mooney-Rivlin stress-strain relation, and shows a good agreement with
experiments. It also leads to the prediction of a phonon correlation function
that depends on the external deformation.Comment: 4 RevTeX pages, 1 figure, submitted to PR
Strain Hardening in Polymer Glasses: Limitations of Network Models
Simulations are used to examine the microscopic origins of strain hardening
in polymer glasses. While traditional entropic network models can be fit to the
total stress, their underlying assumptions are inconsistent with simulation
results. There is a substantial energetic contribution to the stress that rises
rapidly as segments between entanglements are pulled taut. The thermal
component of stress is less sensitive to entanglements, mostly irreversible,
and directly related to the rate of local plastic arrangements. Entangled and
unentangled chains show the same strain hardening when plotted against the
microscopic chain orientation rather than the macroscopic strain.Comment: 4 pages, 3 figure
Direct optical observations of surface thermal motions at sub-shot noise levels
We measure spectral properties of surface thermal fluctuations of liquids,
solids, complex fluids and biological matter using light scattering methods.
The random thermal fluctuations are delineated from random noise at sub-shot
noise levels. The principle behind this extraction, which is quite general and
is not limited to surface measurements, is explained. An optical lever is used
to measure the spectrum of fluctuations in the inclinations of surfaces down to
at W optical intensity, corresponding
to in the vertical displacement, in the
frequency range . The dynamical evolution of the
surface properties is also investigated. The measurement requires only a short
amount of time and is essentially passive, so that it can be applied to a wide
variety of surfaces.Comment: 5pp, 5 figure
Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening
A simple theory for glassy polymeric mechanical response which accounts for
large scale chain relaxation is presented. It captures the crossover from
perfect-plastic response to strong strain hardening as the degree of
polymerization increases, without invoking entanglements. By relating
hardening to interactions on the scale of monomers and chain segments, we
correctly predict its magnitude. Strain activated relaxation arising from the
need to maintain constant chain contour length reduces the dependence of
the characteristic relaxation time by a factor during
active deformation at strain rate . This prediction is consistent
with results from recent experiments and simulations, and we suggest how it may
be further tested experimentally.Comment: The theoretical treatment of the mechanical response has been
significantly revised, and the arguments for coherent relaxation during
active deformation made more transparen
Supersymmetry solution for finitely extensible dumbbell model
Exact relaxation times and eigenfunctions for a simple mechanical model of
polymer dynamics are obtained using supersymmetry methods of quantum mechanics.
The model includes the finite extensibility of the molecule and does not make
use of the self-consistently averaging approximation. The finite extensibility
reduces the relaxation times when compared to a linear force. The linear
viscoelastic behaviour is obtained in the form of the ``generalized Maxwell
model''. Using these results, a numerical integration scheme is proposed in the
presence of a given flow kinematics.Comment: 5 pages, 2 figure
What is the Entanglement Length in a Polymer Melt ?
We present results of molecular dynamics simulations of very long model
polymer chains analyzed by various experimentally relevant techniques. The
segment motion of the chains is found to be in very good agreement with the
repatation model. We also calculated the plateau-modulus G_N. The predicitions
of the entanglement length N_e from G_N and from the mean square displacements
of the chains segments disagree by a factor of about 2.2(2), indicating an
error in the prefactor in the standard formula for G_N. We show that recent
neutron spin echo measurements were carried out for chain lengths which are too
small for a correct determination of N_e.Comment: 5 pages, 4 figures, RevTe
- …