19 research outputs found

    Inflammatory mediators in breast cancer: Coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inflammatory chemokines CCL2 (MCP-1) & CCL5 (RANTES) and the inflammatory cytokines TNFα & IL-1β were shown to contribute to breast cancer development and metastasis. In this study, we wished to determine whether there are associations between these factors along stages of breast cancer progression, and to identify the possible implications of these factors to disease course.</p> <p>Methods</p> <p>The expression of CCL2, CCL5, TNFα and IL-1β was determined by immunohistochemistry in patients diagnosed with: (1) Benign breast disorders (=healthy individuals); (2) Ductal Carcinoma <it>In Situ </it>(DCIS); (3) Invasive Ducal Carcinoma without relapse (IDC-no-relapse); (4) IDC-with-relapse. Based on the results obtained, breast tumor cells were stimulated by the inflammatory cytokines, and epithelial-to-mesenchymal transition (EMT) was determined by flow cytometry, confocal analyses and adhesion, migration and invasion experiments.</p> <p>Results</p> <p>CCL2, CCL5, TNFα and IL-1β were expressed at very low incidence in normal breast epithelial cells, but their incidence was significantly elevated in tumor cells of the three groups of cancer patients. Significant associations were found between CCL2 & CCL5 and TNFα & IL-1β in the tumor cells in DCIS and IDC-no-relapse patients. In the IDC-with-relapse group, the expression of CCL2 & CCL5 was accompanied by further elevated incidence of TNFα & IL-1β expression. These results suggest progression-related roles for TNFα and IL-1β in breast cancer, as indeed indicated by the following: (1) Tumors of the IDC-with-relapse group had significantly higher persistence of TNFα and IL-1β compared to tumors of DCIS or IDC-no-relapse; (2) Continuous stimulation of the tumor cells by TNFα (and to some extent IL-1β) has led to EMT in the tumor cells; (3) Combined analyses with relevant clinical parameters suggested that IL-1β acts jointly with other pro-malignancy factors to promote disease relapse.</p> <p>Conclusions</p> <p>Our findings suggest that the coordinated expression of CCL2 & CCL5 and TNFα & IL-1β may be important for disease course, and that TNFα & IL-1β may promote disease relapse. Further <it>in vitro </it>and <it>in vivo </it>studies are needed for determination of the joint powers of the four factors in breast cancer, as well as analyses of their combined targeting in breast cancer.</p

    A Comprehensive Algorithm for Anterior Skull Base Reconstruction after Oncological Resections

    No full text
    Objective: To present our method for anterior skull base reconstruction after oncological resections. Methods: One hundred nine patients who had undergone 120 anterior skull base resections of tumors (52 malignant [43%], 68 benign [57%]) via the subcranial approach were studied. Limited dural defects were closed primarily or reconstructed using a temporalis fascia. Large anterior skull base defects were reconstructed by a double-layer fascia lata graft. A split calvarial bone graft, posterior frontal sinus wall, or three-dimensional titanium mesh were used when the tumor involved the frontal, nasal, or orbital bones. A temporalis muscle flap was used to cover the orbital socket for cases of eye globe exenteration, and a rectus abdominis free flap was used for subcranial-orbitomaxillary resection. Pericranial flap wrapping of the frontonaso-orbital segment was performed to prevent osteoradionecrosis if perioperative radiotherapy was planned. Results: The incidence of cerebrospinal fluid (CSF) leak, intracranial infection, and tension pneumocephalus was 5%. Histopathological and immunohistochemical analysis of fascia lata grafts in reoperated patients (n = 7) revealed integration of vascularized fibrous tissue to the graft and local proliferation of a newly formed vascular layer embedding the fascial sheath. Conclusion: A double-layer fascial graft alone was adequate for preventing CSF leak, meningitis, tension pneumocephalus, and brain herniation. We describe a simple and effective method of anterior skull base reconstruction after resections of both malignant and benign tumors

    Mutated <i>TP53</i> in Circulating Tumor DNA as a Risk Level Biomarker in Head and Neck Squamous Cell Carcinoma Patients

    No full text
    Circulating tumor DNA (ctDNA) has been suggested as a surrogate biomarker for early detection of cancer recurrence. We aimed to explore the utility of ctDNA as a noninvasive prognostic biomarker in newly diagnosed head and neck squamous cell carcinoma (HNSCC) patients. Seventy HNSCC specimens were analysed for the detection of TP53 genetic alterations utilizing next-generation sequencing (NGS). TP53 mutations were revealed in 55 (79%). Upon detection of a significant TP53 mutation, circulating cell-free DNA was scrutinized for the presence of the tumor-specific mutation. ctDNA was identified at a minimal allele frequency of 0.08% in 21 out of 30 processed plasma samples. Detectable ctDNA correlated with regional spread (N stage ≥ 1, p = 0.011) and poorer 5-year progression-free survival (20%, 95% CI 10.9 to 28.9, p = 0.034). The high-risk worst pattern of invasion (WPOI grade 4–5) and deep invasion were frequently found in patients whose ctDNA was detected (p = 0.087 and p = 0.072, respectively). Detecting mutated TP53 ctDNA was associated with poor progression-free survival and regional metastases, indicating its potential role as a prognostic biomarker. However, ctDNA detectability in early-stage disease and the mechanisms modulating its release into the bloodstream must be further elucidated

    Generation and Characterization of Novel Local and Metastatic Human Neuroblastoma Variants12

    Get PDF
    Neuroblastoma (NB) is the most commonly occurring solid tumor in children. The disease usually arises in the adrenal medulla, and it is characterized by a remarkable heterogeneity in its progression. Most NB patients with an advanced disease have massive bone marrow infiltration at diagnosis. Lung metastasis represents a widely disseminated stage and is typically considered to be a terminal event. Much like other malignancies, NB progression is a complex, multistep process. The expression, function, and significance of the various factors involved in NB progression must be studied in relevant in vivo and in vitro models. Currently, models consisting of metastatic and nonmetastatic cell variants of the same genetic background exist for several types of cancer; however, none exists for NB. In the present study, we describe the generation of a NB metastasis model. SH-SY5Y and MHH-NB-11 NB cells were inoculated orthotopically into the adrenal glands of athymic nude mice. Neuroblastoma cells metastasizing to the lungs were isolated from mice bearing adrenal tumors. Lung metastatic variants were generated by repeated cycles of in vivo passage. Characterization of these variants included cellular morphology and immunophenotyping in vitro, aggressiveness in vivo, and various biologic parameters in vitro. The NB metastatic variant in each model displayed unique properties, and both metastatic variants demonstrated a metastatic phenotype in vivo. These reproducible models of human NB metastasis will serve as an unlimited source of transcriptomic and proteomic material. Such models can facilitate future studies on NB metastasis and the identification of novel NB biomarkers and targets for therapy

    Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Get PDF
    BackgroundNeural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells.Methods and findingsA boy with ataxia telangiectasia (AT) was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA) typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors.ConclusionsThis is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies
    corecore