2 research outputs found

    Juvenile Hormone Titer Versus Juvenile Hormone Synthesis in Female Nymphs and Adults of the German Cockroach, Blattella germanica

    Get PDF
    Patterns of juvenile hormone have been intensively studied in the cockroach Blattella germanica under different physiological situations. However, data have been mainly obtained in vitro, and refer to hormone synthesized by isolated corpora allata, whereas information available on hormone concentration in the hemolymph is restricted to adult females. In order to complement our studies in vitro, we have measured juvenile hormone titer in the hemolymph of B. germanica females in four characteristic physiological situations: penultimate and last instar nymphs, adults during the first vitellogenic cycle, and adults transporting egg cases (ootheca). In general, a significant positive correlation between rates of hormone synthesis and concentration in the hemolymph is observed. The main disparities appear in the penultimate day of the period of ootheca transport, where titer is high whereas synthesis is low, and on day 6 of the first vitellogenic cycle, where synthesis increases whereas titer decreases. At these stages, the observed disparities between synthesis and titer might be explained by differential action of degradation enzymes

    Juvenile hormone and allatostatins in the German cockroach embryo

    Get PDF
    6 páginas, 4 figuras.Levels of juvenile hormone III (JH), FGLamide allatostatin peptides (ASTs), ASTs precursor (preproAST) mRNA and methyl farnesoate epoxidase (CYP15A1) mRNA were measured in embryos of the cockroach Blattella germanica. JH starts to rise just after dorsal closure, reaches maximal levels between 60% and 80% of embryogenesis, and decrease subsequently to undetectable levels. ASTs show low levels during the first two thirds of embryogenesis, increase thereafter and maintain high levels until hatching. PreproAST mRNA shows quite high levels during the two days following oviposition, thus behaving as a maternal transcript, the levels then become very low until mid embryogenesis, and increase afterwards, peaking towards the end of embryo development. CYP15A1 transcripts were detected around 25% embryogenesis and the levels tended to increase through embryogenesis, although differences amongst the days studied were not statistically significant. The opposite patterns of JH and AST towards the end of embryo development, along with the detection of AST immunoreactivity in corpora allata from late embryos, suggest that JH decline is caused by the increase of AST. Moreover, the uncorrelated patterns of JH concentration and CYP15A1 mRNA levels suggest that CYP15A1 expression does not modulate JH production.This work was supported by the Spanish Ministry of Education and Science through the projects BFU2006-01090/BFI (to J.L.M.) and CGL2008-03517/BOS (to X.B.), and by the Rector of the University of Salzburg (Austria).Peer reviewe
    corecore