10 research outputs found

    The Influence of High-Impact Exercise on Cortical and Trabecular Bone Mineral Content and 3D Distribution Across the Proximal Femur in Older Men: A Controlled Unilateral Intervention Randomized

    No full text
    Regular exercisers have lower fracture risk, despite modest effects of exercise on bone mineral content (BMC). Exercise may produce localized cortical and trabecular bone changes that affect bone strength independently of BMC. We previously demonstrated that brief, daily unilateral hopping exercises increased femoral neck BMC in the exercise leg versus the control leg of older men. This study evaluated the effects of these exercises on cortical and trabecular bone and its 3D distribution across the proximal femur, using clinical CT. Fifty healthy men had pelvic CT scans before and after the exercise intervention. We used hip QCT analysis to quantify BMC in traditional regions of interest and estimate biomechanical variables. Cortical bone mapping localized cortical mass surface density and endocortical trabecular density changes across each proximal femur, which involved registration to a canonical proximal femur model. Following statistical parametric mapping, we visualized and quantified statistically significant changes of variables over time in both legs, and significant differences between legs. Thirty-four men aged mean (SD) 70 (4) years exercised for 12-months, attending 92% of prescribed sessions. In traditional regions of interest, cortical and trabecular BMC increased over time in both legs. Cortical BMC at the trochanter increased more in the exercise than control leg, whereas femoral neck buckling ratio declined more in the exercise than control leg. Across the entire proximal femur, cortical mass surface density increased significantly with exercise (2.7%; p 6%) at anterior and posterior aspects of the femoral neck and anterior shaft. Endocortical trabecular density also increased (6.4%; p 12% at the anterior femoral neck, trochanter, and inferior femoral head. Odd impact exercise increased cortical mass surface density and endocortical trabecular density, at regions that may be important to structural integrity. These exercise-induced changes were localized rather than being evenly distributed across the proximal femur. © 2015 American Society for Bone and Mineral Research

    The influence of high-impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: A randomized controlled unilateral intervention

    No full text
    Regular exercisers have lower fracture risk, despite modest effects of exercise on bone mineral content (BMC). Exercise may produce localized cortical and trabecular bone changes that affect bone strength independently of BMC. We previously demonstrated that brief, daily unilateral hopping exercises increased femoral neck BMC in the exercise leg versus the control leg of older men. This study evaluated the effects of these exercises on cortical and trabecular bone and its 3D distribution across the proximal femur, using clinical CT. Fifty healthy men had pelvic CT scans before and after the exercise intervention. We used hip QCT analysis to quantify BMC in traditional regions of interest and estimate biomechanical variables. Cortical bone mapping localized cortical mass surface density and endocortical trabecular density changes across each proximal femur, which involved registration to a canonical proximal femur model. Following statistical parametric mapping, we visualized and quantified statistically significant changes of variables over time in both legs, and significant differences between legs. Thirty-four men aged mean (SD) 70 (4) years exercised for 12-months, attending 92% of prescribed sessions. In traditional regions of interest, cortical and trabecular BMC increased over time in both legs. Cortical BMC at the trochanter increased more in the exercise than control leg, whereas femoral neck buckling ratio declined more in the exercise than control leg. Across the entire proximal femur, cortical mass surface density increased significantly with exercise (2.7%; p 6%) at anterior and posterior aspects of the femoral neck and anterior shaft. Endocortical trabecular density also increased (6.4%; p 12% at the anterior femoral neck, trochanter, and inferior femoral head. Odd impact exercise increased cortical mass surface density and endocortical trabecular density, at regions that may be important to structural integrity. These exercise-induced changes were localized rather than being evenly distributed across the proximal femur

    Effect of unfavorable trophic scenarios on amylase and protease activity of Nephrops norvegicus (L.) larvae during their first vertical migration: a laboratory approach

    No full text
    In Portuguese waters, Nephrops norvegicus larvae hatch at 400–800 m depth and need to perform a vertical migration to food-rich shallower waters to find suitable prey. The effect of suboptimal feeding on digestive enzymes activity of N. norvegicus larvae during this early period of their larval life remains unknown. Protease and amylase activities were investigated ex situ using flurometry in laboratory-hatched larvae exposed to different feeding and/or starving scenarios in the 24 h following hatching, the period during which they typically accomplish their upward vertical migration. Amylase activity was very low in comparison with protease activity, indicating that carbohydrates are not a primary energy reserve. Larvae starved for 12 h and subsequently fed displayed no increase in amylase activity, which suggests that feeding may be required before 12 h post-hatch to trigger amylase activity. Protease activity was high under all feeding conditions, and the increase in protease activity under sustained starvation indicated the catabolism of protein reserves. The ability of first-stage N. norvegicus larvae to metabolize protein reserves may play a decisive role for their survival during their first vertical migration, as it enables them to overcome the deleterious effects of short-term starvation and/or suboptimal feeding.The authors thank Susana Pereira and Marta Sastre for their help during the sampling and processing of Norway lobster larvae. This work was supported by the Acção Integrada Luso-Espanhola 2010 “Dinâmica da flora microbiana intestinal e de enzimas digestivas em larvas de invertebrados marinhos num oceano em mudança à escala global” (Portugal: Nº E-116/10; Spain: PT2009-0069) and by the Portuguese Science Foundation (Fundação para a Ciência e a Tecnologia-FCT) as a PhD scholarship (SFRH/BD/27615/2006 to PNP), and the research grant “LobAssess-Norway lobster stocks in Portugal: Basis for assessment using information on larval production and ecology” (POCI/BIA-BDE/59426/2004, PPCDT/BIA-BDE/59426/2004).publishe

    A prehistoric tsunami induced long-lasting ecosystem changes on a semi-arid tropical island--the case of Boka Bartol (Bonaire, Leeward Antilles)

    No full text
    The Caribbean is highly vulnerable to coastal hazards. Based on their short recurrence intervals over the intra-American seas, high-category tropical cyclones and their associated effects of elevated storm surge, heavy wave impacts, mudslides and floods represent the most serious threat. Given the abundance of historical accounts and trigger mechanisms (strike-slip motion and oblique collision at the northern and southern Caribbean plate boundaries, submarine and coastal landslides, volcanism), tsunamis must be considered as well. This paper presents interdisciplinary multi-proxy investigations of sediment cores (grain size distribution, carbonate content, loss-on-ignition, magnetic susceptibility, microfauna, macrofauna) from Washington-Slagbaai National Park, NW Bonaire (Leeward Antilles). No historical tsunami is recorded for this island. However, an allochthonous marine layer found in all cores at Boka Bartol reveals several sedimentary criteria typically linked with tsunami deposits. Calibrated (14)C data from these cores point to a palaeotsunami with a maximum age of 3,300 years. Alternative explanations for the creation of this layer, such as inland flooding during tropical cyclones, cannot entirely be ruled out, though in recent times even the strongest of these events on Bonaire did not deposit significant amounts of sediment onshore. The setting of Boka Bartol changed from an open mangrove-fringed embayment into a poly- to hyperhaline lagoon due to the establishment or closure of a barrier of coral rubble during or subsequent to the inferred event. The timing of the event is supported by further sedimentary evidence from other lagoonal and alluvial archives on Bonaire

    Introduction

    No full text
    corecore