6 research outputs found

    The Galactose Index measured in fibroblasts of GALT deficient patients distinguishes variant patients detected by newborn screening from patients with classical phenotypes

    Get PDF
    Background: The high variability in clinical outcome of patients with Classical Galactosemia (CG) is poorly understood and underlines the importance of prognostic biomarkers, which are currently lacking. The aim of this study was to investigate if residual galactose metabolism capacity is associated with clinical and biochemical outcomes in CG patients with varying geno- and phenotypes. Methods: Galactose Metabolite Profiling (GMP) was used to determine residual galactose metabolism in fibroblasts of CG patients. The association between the galactose index (GI) defined as the ratio of the measured metabolites [U13C]Gal-1-P/ [13C6]UDP-galactose, and both intellectual and neurological outcome and galactose-1-phosphate (Gal-1-P) levels was investigated. Results: GMP was performed in fibroblasts of 28 patients and 3 control subjects. The GI of the classical phenotype patients (n = 22) was significantly higher than the GI of four variant patients detected by newborn screening (NBS) (p = .002), two homozygous p.Ser135Leu patients (p = .022) and three controls (p = .006). In the classical phenotype patients, 13/18 (72%) had a poor intellectual outcome (IQ < 85) and 6/12 (50%) had a movement disorder. All the NBS detected variant patients (n = 4) had a normal intellectual outcome (IQ ≄ 85) and none of them has a movement disorder. In the classical phenotype patients, there was no significant difference in GI between patients with a poor and normal clinical outcome. The NBS detected variant patients had significantly lower GI levels and thus higher residual galactose metabolism than patients with classical phenotypes. There was a clear correlation between Gal-1-P levels in erythrocytes and the GI (p = .001). Conclusions: The GI was able to distinguish CG patients with varying geno- and phenotypes and correlated with Gal-1-P. The data of the NBS detected variant patients demonstrated that a higher residual galactose metabolism may result in a more favourable clinical outcome. Further research is needed to enable individual prognostication and treatment in all CG patients

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis

    Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses

    Full text link

    Lasers

    No full text
    corecore