166 research outputs found

    An Integrated Circuit for Signal Processing of the AMS RICH Photmultipliers Tubes

    Get PDF
    An analog integrated circuit has been designed, in a BiCMOS 0.8 micron technology, for the feasability study of the signal processing of the AMS RICH photomultiplier tubes. This low power, three channel gated integrator includes its own gate and no external analog delay is requiered. It processes PMT pulses over a dynamic range of more than 100. A logic output that indicates whether the analog charge has to be considered is provided. This gated integrator is used with a compact DSP based acquisition system in a 132 channels RICH prototype. The charge calibration of each channel is carried out using a LED. The pedestal measurement is performed on activation of a dedicated input. The noise contribution study of the input RC network and amplifiers is presented.Comment: IEEE symp. on Nucl. Sci. and Med. Imaging, Toront

    Damping vs. Clamping to Mitigate the RHIC Triplet Oscillations

    Get PDF
    N/

    Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson's disease

    Get PDF
    Detection and discrimination of neurodegenerative Parkinson syndromes are challenging clinical tasks and the use of standard T1- and T2-weighted cerebral magnetic resonance (MR) imaging is limited to exclude symptomatic Parkinsonism. We used a quantitative structural MR-based technique, MR-elastography (MRE), to assess viscoelastic properties of the brain, providing insights into altered tissue architecture in neurodegenerative diseases on a macroscopic level. We measured single-slice multifrequency MRE (MMRE) and three-dimensional MRE (3DMRE) in two neurodegenerative disorders with overlapping clinical presentation but different neuropathology — progressive supranuclear palsy (PSP: N = 16) and idiopathic Parkinson's disease (PD: N = 18) as well as in controls (N = 18). In PSP, both MMRE (Δμ = − 28.8%, Δα = − 4.9%) and 3DMRE (Δ|G*|: − 10.6%, Δφ: − 34.6%) were significantly reduced compared to controls, with a pronounced reduction within the lentiform nucleus (Δμ = − 34.6%, Δα = − 8.1%; Δ|G*|: − 7.8%, Δφ: − 44.8%). MRE in PD showed a comparable pattern, but overall reduction in brain elasticity was less severe reaching significance only in the lentiform nucleus (Δμ n.s., Δα = − 7.4%; Δ|G*|: − 6.9%, Δφ: n.s.). Beyond that, patients showed a close negative correlation between MRE constants and clinical severity. Our data indicate that brain viscoelasticity in PSP and PD is differently affected by the underlying neurodegeneration; whereas in PSP all MRE constants are reduced and changes in brain softness (reduced μ and |G*|) predominate those of viscosity (α and φ) in PD

    Muon Colliders

    Full text link
    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \mumu colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.Comment: 28 pages, with 12 postscript figures. To be published Proceedings of the 9th Advanced ICFA Beam Dynamics Workshop, AIP Pres

    ARTUS: A Rhic TUne monitor System

    Full text link
    This report describes various measurement techniques and their possible realizations

    Alignment of the high beta magnets in the RHIC interaction regions

    Get PDF
    The betatron functions inside the triplet quadrupoles in the Relativistic Heavy Ion Collider-RHIC are of the order of 1,500 m, necessitating additional attention in the alignment procedure. On each side of the interaction regions eight cryogenic elements (six quadrupoles and two horizontal bending dipoles) are placed inside large cryostats. The quadrupole magnetic centers are obtained by antenna measurements with an accuracy of {+-} 60 {micro}m. The signals from the antenna were cross calibrated with the colloidal cell measurements of the same magnet. The positions of the fiducials are related to the magnet centers during the antenna measurements. Elements are positioned warm inside the cryostats, with offsets to account for shrinkage during the cool down. The supports at the middle of the two central quadrupoles are fixed, while every other element slides longitudinally inside the cryostat during cool down or warm up
    • …
    corecore