
Particle Accelerators, 1996, Vol. 55, pp. [313-327] /67-81

Reprints available directly from the publisher

Photocopying permitted by license only

© 1996 OPA (Overseas Publishers Association)

Amsterdam RY. Published in The Netherlands under

license by Gordon and Breach Science Publishers SA

Printed in Malaysia

A PROPOSED FLAT YET HIERARCHICAL
ACCELERATOR LATTICE OBJECT MODEL*

N. MALITSKY and R. TALMAN

Laboratory ofNuclear Studies, Cornell University, Ithaca NY, 14853, USA

F. DELL, S. PEGGS, F. PILAT, T. SATOGATA, L. SCHACHINGER, l

S. TEPIKIAN, D. TRBOJEVIC, C.G. TRAHERN and J. WEI

RHIC Project, Brookhaven National Laboratory, Upton, Long Island, NY,
1Berkeley, CA, 94708, USA

(Received 7 February 1996; infinalform 7 February 1996)

A computer generated, standard machine format (SMF) is proposed. Its purpose is to facilitate
communication of"flat" lattice descriptions between different users and processes, especially for
model-based control. "Essential" parameters, possibly time dependent, of the physical elements
in the lattice are recorded. Though fully-instantiated, a hierarchical lattice view is retained.
"Objects" in the model are closely associated with physical elements, not computer constructs.
Dual intersecting lattices can be consistently described even though they share elements. Though
object oriented, class member functions are concerned with data storage and retrieval, not with
beam or particle evolution or with theoretical lattice functions. This assures the segregation
of data needed for all control and modeling programs, from algorithms specific to particular
programs. For the same reason, logical data specific to particular program& is segregated from
physical data. Different representations of the same model are optimized for different purposes:
efficiency, rapid interchange, editability, commercial database access, etc..

Keywords: Lattices; control systems; simulation.

1 MOTIVATION AND INFORMAL CONSIDERATIONS

For communicating between different accelerator modeling or control
processes it is essential to have a lattice modela in which every physical

*This manuscript has been authored under contract number DE-FG02-95ER40920 with the
U.S. Department of Energy.

a A "lattice model", as the term is used in this report, is a collection of numerical values of
all parameters, possibly time varying, of the physical elements that influence particle orbits in
the accelerator. No particle or beam parameters are included.

[313]/67

[314]168 N. MALITSKY et al.

element in the accelerator has its own independent identity, name, and
parameters. This can be called a "flat" or "fully-instantiated" view of the
accelerator. On the other hand, the "theoretical", or "nominal" or "design"
accelerator, typically exhibiting much greater symmetry than this, is most
usefully viewed with a hierarchical organization.

The lattice model proposed here preserves both of these views. Predicated
on the assumption that the accelerator is usefully analyzed and operated
as if it were almost ideal, we consider it important that the extra structures
required for an instantiated lattice description be as inconspicuous as possible.
Since the definition of what constitutes "essential" data is not particularly
controversial, this report is more concerned with establishing terminology for
describing the model than with the model itself. A computer file containing
the data for this model will be called a standard machine format SMF, even
though it may take the form ofcomputer language structures, especially when
internal to a computer program. This model is considerably more limited in
scope and less ambitious than object models that encompass beam dynamics;
e.g. Michelotti! and Iselin.2

To enhance the ability to communicate between processes, it is important
to be able to segregate data that is common to most modeling codes (because
they describe physical characteristics inherent to the elements) from data
that are peculiar to particular codes (perhaps because they control processing
algorithms.) To some extent this can be handled simply by maintaining but
ignoring irrelevant data, but the structures advocated here attempt to make
this segregation "natural".

Fully hierarchical descriptions have typically been expressed using the
Standard Input Format (SIF,3 commonly also known as Mad Input Language,
in one of its states of evolution starting from Transport) or by many variant,
high level, languages. Since fully-instantiated formalisms have evolved
independently in each lattice program and control system, they have not been
standardized to the same degree. The intention hereis to provide a mechanism
for "remembering" the original design hierarchy, while at the same time
supporting the individualization of some or all elements. This is consistent
with a principle according to which data should not be discarded needlessly,
especially if doing so clouds the original design structure of the lattice - this
is what happens when small symmetry breaking alterations formally break
design symmetries. The goal then is to have a single data set that retains both a
highly symmetric view attractive to designers and the fully-instantiated view
necessary for control. (A tiny preview of terminology to support these dual

PROPOSED ACCELERATOR LATTICE OBJECT MODEL [315]/69

views: an individual element will have a generic name appropriate to its ideal,
hierarchical existence and a lattice nameb appropriate to its flat, individual
existence. If the modeling program is part ofa "model-based" control system,
the generic name has presumably been selected by an accelerator designer
and the lattice name has been chosen by a member of (or committee of)
Project Management.)

The proposed ability to "remember" design configurations is very limited;
for example, changing the sequential order ofphysical elements or the global
geometry is not allowed, and (other than a modest degree of "gangability")
no form of "intermediate" organization other than partial expansion of the
hierarchy is recognized.

To enforce the feature that "instantiated deviations be as inconspicuous
as possible" our policy requires that only deviations from nominal values
be recorded in fully-instantiated form. Before leaping to the conclusion
that this constraint is capricious and arbitrary one should admit that it
reflects operational practice in many cases. Especially during commissioning,
one commonly has insufficient information to define meaningful deviation
from design values. On the other hand, it is probably natural for hardware
readout by a control system to recover total values (even though deviations
from design would probably be preferable.) In this case, with the original
design hierarchy being always known, deviations can be recovered as the
instantiated total value minus the generic value. Furthermore, if there are
deviations large enough to perturb operations severely they should probably
be incorporated into the "ideal" lattice description - e.g., if the field integrals
of all lattice dipoles are, say, 1% too great, that fact can be incorporated
in the design so that there will then be no systematic deviation of that
parameter. In our model all undefined deviations default to zero. This policy
is consistent with a realistic approach in which deviations from the ideal are
only included as they gradually become known, or conjectured, or are under
investigation.

To recapitulate: maintaining nominal values in the generic description and
only deviations from these values in instantiated form - we have magnet
strengths typically in mind - is an appropriate conceptual constraint, which
can, in any case, be removed if required. Rather than "starting from a clean
slate", in accelerator operation one is usually pressing forth on small salients
from pre-established conditions into the as-yet unexplored.

bThe term "site wide name" or SiteWideName is also used for what we call the LattName.

[316]/70 N. MALITSKY et ai.

There are many other examples of input to accelerator modeling programs
taking the form of deviations; for example "per magnet" measured field
expansion coefficients and measured survey locations. It is also natural
to express the element strength changes recommended by the correction
algorithms of a modeling program in the form of deviations from nominal
(though nominal is commonly zero in this case.) Another type of deviation
is Monte Carlo generated, internal to a modeling program. Finally, an even
more ambitious generalization that is well represented by a deviation is a
"ramped" or "dynamic" lattice parameter, such as hysteretic field strength,
extraction octupole, bumper strength, RF frequency, etc.

It is intended, even for a single lattice, that there be more than one
representation of the model being discussed.c As well as being required to
be "equivalent" each valid representations will provide some of the following
features:

• computer generated;

• human editable;

• computationally efficient;

• rapidly interchangeable-hence probably binary;

• capable of being output from one process and "piped" as input to another
process. A process that accepts such a file as input and generates a revised
file (normally of the same format) as output is called a "filter".d

• Sophisticated "book-keeping" in the face ofmultiple lattice variants - this
probably implies manageability by a commercial database management
system. (Naturally, in this case, the data for the model described here will
constitute only a small fraction of the data being managed.)

CWe use the term "equivalent representations" to refer to differently organized datasets that
describe the same lattice.

d This functionality is copied from the writefile/readfile feature of Teapot. The filter
functionality has been developed especially for the particular needs of the RHIC project at
BNL. The "thick" file, newly introduced in this report, will replace the thin fort. 7 "machine
file" accepted by those filters. An SDS4 format will also be supported. (The most important
modification is that element splitting into thinner elements, presumably for purposes of
symplectic integration, though anticipated, is not performed at this level. Subsequently intended
splitting of a thick element into N+l thin elements is specified by new "element splitting"
attribute N.) The purpose of most of the language features is to permit heterogeneous filters to
process the same lattice files. It should not, however, be inferred that the language is intended
to be in any way specific to Teapot; quite the contrary. The purpose of references to Teapot is to
lend concreteness. The sort of flow of information envisaged is shown in Figure 1 which applies
to the RHIC accelerator. Though the shaded box is emphasized in this report, it is primarily
intended as an example implementation of the object model.

PROPOSED ACCELERATOR LATTICE OBJECT MODEL [317]/71

RHIC-TEAPOT INTERFACE DEFINITION

lattice output (2)

standard 1attir description'standard"

oP/CS sds : .
Same forma~. I

Specified by :
BNL. Keyed:

~ by element:
~ index. I

I
I

~~

RHIC :Teapot
I

adjustment sds

survey sds~ _......;.;th..;.;;.;i~ck~_

/ flatmag.meas.sds ~~~-

I Teapot
~cr:thin
~~ flat(3)

~dbSf

-----=--
flat lattice sds ~ RhicAllSds

BNL

FIGURE 1 Flow ofinformation back and forth between a modeling program and an accelerator
control system. The SMF described in this report is shown as the shaded "tpot thick flat" data
set. The number (2) in parenthesis indicates two formats. They are the ASCII representation and
a C++ representation (or an essentially similar self-descriptive standard (SDS) format). Though
not shown, filter processing of this file is also possible.

The ideal lattice representation would be optimal for all of these, but it
is assumed that several representations, each one optimized for a different
purpose, will be used in practice. With disciplined adoption of the model,
generation of translators from one representation to another should not be
difficult.

What are the intended benefits of the object-oriented approach advocated
here? Quite apart from any particular implementation, disciplined analysis
of the problem in order to minimize the complexity of the data structures is
presumably a good thing. The concept of representing the flat, instantiated,
lattice strictly in the form of deviations from a generic ideal lattice is
one product (which everyone may not agree with) of this discipline.
Furthermore, the explicit spelling out of data structures in any particular

[318]/72 N. MALITSKY et al.

implementation makes the data structures more easily accessible by other
programs, especially if they are written in the same language. This should
facilitate incorporating the powerful features of modem methodologies and
programming languages. An "access library" capable of taking advantage of
this feature and able to describe an arbitrary new element (such as an internal
target, a beam-beam effect, or areal-time effect) has been described; it permits
coding to. be done without understanding or disturbing previous coding. It
can also be used together with other mathematical or physical libraries (e.g.

differential algebra.) Another purpose is to make the accelerator description
accessible to modem operating systems, integrated environments, real-time
control systems, distributed systems, databases and user interfaces.

To understand this report it would be helpful to the reader to have samples
of the various files described, but there is insufficient space for that. For
that reason a longer paper, containing sample files, is available by request
from the first author. One starts with an ideal accelerator description in SIF

format. From this can be prepared, on the one hand, an external, ASCII SMF

representation (explained in Section 3) and, on the other, internal, ASCII C++

structures representing the same lattice (and explained in Section 4).

2 OVERVIEW OF FEATURES

The important features of the proposed lattice model are listed informally
here. In this report some organizational features are drawn from Rumbaugh
et al. 5 The first step in the Object Modeling Technique is supposed to be
the generation of an Analysis Model which specifies what the system must
do. The broad outline of this has already been given. Here we give more
detail, defining terms, and describing examples by an ASCII "shorthand"
(resembling SIp) intended to facilitate human (as contrasted with computer)
intelligibility. Except for occasional preview examples, implementation
mechanisms will be described later. Though the lattice description is to
be called a "Standard Machine Format" (SMF) , or "Standard Machine
File", though this is not intended to imply that it is implemented as a
true file of any particular computer language - "data set" would be more
accurate.

The more important (and most likely to be ambiguous) terms are placed in
quotation marks to indicate that they are being defined implicitly by their
use in the accompanying sentences (or that their meaning is admittedly

PROPOSED ACCELERATOR LATTICE OBJECT MODEL [319]/73

vague.) Technical language elementse are indicated in italic print; especially
important are those starting with a capital letter since they are names ofclasses
in the c++ representation described in Section 4. Material in typewri ter

type represents actual entries in an ASCII SMF.

The following terms (with examples drawn from the ASCII representation)
will be used:

• Parameter's (typical names ld, kql, ...)

• ElemAttribute's (such as the arc length L through the element) can be
strength, position, etc. - physical properties an accelerator element can
have!

• GenElement's, (typical names $quadhf, $sextl, ...) GenElement
definitions include the assignment of element type (such as QUAD) and
ElemAttribute's

• Line's (typical names before "line expansion" --fullcell, --ring,

... ,same names residual after expansion +fullcell, +ring, ...)

• LattElement's, in one-to-one correspondance with "physical" elements in
the lattice, have the generic names and nominal values of GenElement's

and (optionally) "per element" attribute deviations and LattElement names
(such as _qf311, _fred, ...)

The proposed data set has various forms of organization. One is into
"model levels", indicated by Roman numerals and containing the following
categories of definitions:

I. Parameter names are introduced and assigned numerical values.

II. GenElement's are defined and their attributes are assigned (eventuallyg)
numeric values.

III. Line's are defined. Unlike elements, for which two "kinds" are recog
nized, there is only one kind of line. Like GenElement's, Line's are

eBy and large, abbreviations are avoided. The only exceptions are the words generic, element,
attribute, parameter, lattice which are abbreviated to gen, elem, attrib, param, latt, but only when
they are prefixed as adjectives to other words.

! It is also possible for an ElemAttribute to have logical character such as vacuum chamber
SHAPE which might be ellipse, rectangle, etc. In the C++ implementation of Section 4,
strings (ellipse for example) can be macro-replaced by numbers so that a single attribute type
(numerical) is sufficient.

g "Eventually" means "after complete processing". In this case, an attribute may be assigned
a parameter that will eventually be replaced by a number.

[320]/74 N. MALITSKY et al.

generic. A Line can contain another Line nested within it, and so on.
Line expansion is discussed below.

IV. LattElement's are listed (eventuallyh) sequentially, augmented as ap
propriate by all nonvanishing deviations from inherited generic values.
Though primarily intended as a flat description it retains line names to
permit hierarchical reconstruction.

IV' . This level is internal to Teapot; it is, strictly speaking, not part of the
lattice model being discussed. It is included here to facilitate discussion. i

Appendix A shows how an extra level such as this fits into the model.

Only level IV and (IV') are truly flat. It would be possible to relax the
requirement that the data be listed sequentially in the order I, II, III, IV. On
the other hand, since the data sets are machine generated, such flexibility
seems unnecessary. So level I data comes first and is completed, then II, and
so on.

Some general features of the model are listed next, roughly in order of
importance, with most important first, and with some repetition of points
already covered.

• Each LattElement inherits a GenElement name from level II, implic
itly acquires a sequential index, and is (optionally) assigned a fully
instantiated name appropriate for flat description. GenElement names and
ElemAttribute'sJ assigned in level II are inherited by LattElement's in
level IV where instantiated deviations are also (optionally) assigned.k

• The lattice description includes a "flat"Z list of elements in one-to-one,
sequential correspondance with "thick" elements of the actual lattice.
The term "thick" is synonymous with "physical" which is the level of

h See previous footnote.

i In the (internal, but externally accessible) Teapot description some "physical" elements have
been artificially subdivided for symplectic particle tracking purposes. This data is organized in
almost strictly flat form, even to the extent that all element record formats are identical. It is
available in various forms: formatted (editable or "slow") ASCII, unformatted (fast) ASCII, and
SDS (self-descriptive standard) data sets.

JIn greater detail, there are two distinct types of attributes: numerical attributes and "logical"
attributes (such as SHAPE=ellipse). The term ElemAttribute subsumes both meanings.

kAnother new feature being introduced is that each attribute is also assigned an r.m.s.
uncertainty. For most parameters this feature is superfluous since no such uncertainties are
available. As usual in this language, this defaults to the parameter being known perfectly. Note
that this uncertainty, being generic, is defined in level II.

ZTo the extent that "flat" refers to a data file, we define it to mean one record per element,
sequentially listed, but do not require each record to have the same format.

PROPOSED ACCELERATOR LATTICE OBJECT MODEL [321]/75

differentiation at which an element is individually positioned and powered,
for example in a control system. Because of the sequential nature of the
enumeration, each element has a unique sequential integer index (lattice
beginning is 0) which must obviously be recoverable from the lattice
description. This index can serve as a key for correlating with other files
containing data such as lattice functions, power supply currents, surveyed
positions, etc.

• The term "flat" also conveys the meaning that any element attribute can
be assigned to any element. To support this feature any undefined element
attribute is zero or null by default.

• The model is "complete"; all data required for reconstruction and
subsequent beam dynamics analysis of the lattice is contained, and this
must remain true when the file is passed through a filter. Any element
attribute (for example a strength) can be assigned an instantiated deviation
value whether or not the strength was introduced generically in the original
design.

• A hierarchical lattice tree is based on lines as in the SIF. This provides
a mechanism for recovering the original hierarchical organization of the
lattice even after the symmetry has been broken by individualization of
some of its element names or attributes. This ability relies on the capability
of defining and naming lines as well as on the representation of attribute
values as design values plus deviations.

• All language elements of the model should be "extendable". Hence the list
of reserved GenElement's types (such as QUAD), and the lists of reserved
numerical ElemAttribute's (such as ANGLE) and logical ElemAttribute's
(such as SHAPE) can be extended in ad hoc fashion. Since such extensions
tend to defeat effective communication, it is important to have an agreed-to
vocabulary of recommended types and attributes initially - the reserved
attributes defined in the SIF will constitute the majority of "reserved"
names. But this list can be augmented later without important restriction;
to emphasize the point, no lists of reserved names are given in this report.
Restoring the loss of consistency between written and read files implied
by introducing new elements or attributes is the responsibility of the
user(s). On read-in, unrecognized elements and their values, if any, are
ignored. This is a mechanism that allows the same data file to be used by
different programs; information specific to one program can be ignored by
another.

• In the SIF, two elements whose strengths are given by the same symbolic

[322]/76 N. MALITSKY et al.

parameters are implicitly "ganged" together. The same mechanism applies
here. A moderate further degree of "gangability" is also supported.
It permits the declaration of individual elements ,as belonging to a
family for which one specified parameter is allowed to be varied, with
the changes constrained to be the same for all family members.m To
support unequal weighting such as "equal but opposite" element change
functionality, a numerical weight (defaulting to unity) can accompany the
family designation. (Incidentally, no arithmetic operations are allowed in
parameter definitions.)

• Free format. Only. non-zero entries need be made, and in any order,
except a numerical value must follow its corresponding symbolic name.
There may be other ad hoc syntactical rules governing the sequencing
of ElemAttributes and their values within a GenElement or LattElement
definition.

• The model supports different formats optimized for different purposes.
These include sequential-ASCII and C++ header file format. The ability
to locate and edit parameters by hand in at least one format is essential, but
ease of editing is not given a high priority (since complicated alterations
should be performed some other way).

3 IMPLEMENTATION MECHANISM FOR THE ASCII
REPRESENTATION

Hierarchic.al organization can be recovered from the "flat" sequential level IV
ASCII listing by appropriate processing of the Line's. The fact that Line's may
be nested in level III is the only complication.

The simplest (and least. interesting) possibility would have no Line's
defined in level III. In that case the sequence of elements listed in level IV
would be explicitly flat. The next simplest (and not quite empty ofsignificance

m Correction schemes often employ "families" or "gangs" ofelements (for example correlated
beam adjusters) that are established independent of the original design hierarchy of the lattice.
Such newly imposed families can "increase the symmetry" by constraining to be equal certain
strengths that would have been independent because they belonged to elements that were
generically independent in the original design. On the other hand, "symmetry reduction" results if
a newly defined family distinguishes (for example by inclusion or exclusion) elements that were
generically equivalent in the original design. The "increased symmetry" case can be described
while respecting the original hierarchy. In the "reduced symmetry" case the original hierarchy
can be respected as regards the ideal lattice but must be violated at the level of deviations.

PROPOSED ACCELERATOR LATTICE OBJECT MODEL [323]/77

since it might model an ideal accelerator) has no deviations introduced in
level IV. In that case, Line names appearing in level IV can be "macro
expanded" by replacing the Line name by its "macro" definition available
from level III. Actually "replace" in the previous sentence is not quite right
- the original Line name remains but, marked as having been expanded, it
serves as memory of the ideal hierarchy but is invisible to the flat view. At
this point we expand the terminology slightly by saying that the Line name
is alive while it remains unexpanded, and dead thereafter. The simplest valid
complete example of the level IV, ASCII description of an ideal accelerator
would, for example, be ---idealRing, a Line defined in level III.

Practical cases are intermediate between the two extremes described in
the previous paragraph. Suppose, again starting with the simplest possibility,
that the ring being described were the ---idealRing introduced above
but with a single parameter changed from the ideal. In that case the
same macro expansion occurs until the LattElement whose attribute needs
changing becomes exposed. At that point macro expansion ceases and the
parameter deviation is entered. This involves (logical) concatenation of the
generic and instantiated records. Rather than requiring a parameter change,
suppose the LattElement needs to be named - same process, expand until
exposed and add the name. When more deviations or names are required the
macro expansion process continues as necessary. On read-in full expansion
presumably takes place.

At any stage in the expansion process the list will consist of LattElement's
and sub-lists of LattElement's and unexpanded Line's contained in curly
braces, {and}; Since this looks much like the block definition of the
computer language C, it seems that "pretty-printing" level IV will recover
the hierarchical structure visually. On the other hand, full expansion, with
suppression of the curly braces and "dead" names, yields a flat listing.

4 C++ IMPLEMENTATION

This document is loosely based on the Object Modeling Technique,5

particularly on its object model. The previous sections have contained
the data requirements and can be considered to be the first stage of the
object-oriented methodology, namely the Analysis Model. The next stage,
Object Design, describes the structure' of the objects in the system and
their relationships. It should not depend on a particular programming

[324]/78 N. MALITSKY et at.

language; rather it should be based on classic data structures or container

classes (such as Vector, Dictionary, etc.) that can be provided by most
object-oriented languages as part of their predefined library. We use (with
minor modification) conventional object diagrams and notations of this

methodology. For example, a diamond indicates aggregation and a triangle
inheritance. We introduce one ad hoc notation - a "switch" between objects
- which means that an object of the class can be initialized one way or
(exclusive) the other. For the sake of clarity, the examples in this section are

implemented in C++; the data structures are shown in Appendix A.n

In the model each accelerator program is considered as a sub-class of the
Pac (Platform for Accelerator Codes)6 class. The internal data structures
and methods of such codes, being determined by particular algorithms and
developer's styles, may be different. But, as if derived from the Pac class as
regards lattice description, each code inherits the ability to communicate with
other codes via a common data. The structure of the class Pac is organized as
set of static (global) collections that are in one-to-one correspondence with
the SMF described in Section 2:°

• Level I: Parameter's and ElemFunction's. Instances of these classes
include only the name and value.

• Levelll: GenElement's. In accordance with the proposed flat description,
each physical element (class GenElement) has the same internal structure
and can be implemented as a direct sum oflinear spaces ofdesign attributes
(class ElemAttributes) and their r.m.s. uncertainties:

double
double
GenElement

lq
kql
quadhf
quadhf.value
quadhf.rms

=0.6;
= 0.3789;
("quadhf");
=Iq*L + kql *Kl;
= kql *0.01 *Kl;

n In the figures some of the so-called "classic data structures" such as Vector, which is a
fixed-size collection of values of uniform type, List, similar except the number of elements is
unknown in advance, and Dictionary appear. Also the use of class templates is indicated. For
example, Vector{Parameter} is a class generated by template Vector{class T}.

°The set of these collections can be regarded as a local database that serves several purposes.
It provides the unique set of object names and permits the same lattice to be shared by different
accelerator programs (implemented as correspondent classes).

PROPOSED ACCELERATOR LATTICE OBJECT MODEL [325]/79

Here Land Kl are SIP attributes, and GenElement object quadhf is an
element with length equal to 0.6 m and gradient 0.3789 m- I . In this example
the quadrupole gradient is defined with 1 percent uncertainty. Notationally,
boldface quantities like Land Kl can be thought ofas "unit vectors" along the
axes of element length and quadrupole strength, the * operator is overloaded
to connote "multiplication" by a "scalar" and the + operator is overloaded
to connote vector addition. Because each physical element has an arbitrary
number of attributes, it seems useful to implement its data as a dictionary
(associative array) linking the name of predefined basis vector ElemAttribID
(such as L, Kl) with its corresponding attribute value ElemAttribValue. The
instance of class ElemAttribValue can be defined by numerical value or by
Parameter. Additionally it includes a pointer to object of class ElemFunction
that describes the real physical processes (magnetic field ramp, power supply
ripple etc.) The class GenElement serves as base class for all different types
of physical elements, such as Sbend, Quadrupole, etc. These classes have
the same structure and only differ by variable type. An element may· have
an associated map - that this is optional is indicated by tiny open circle
attached to the map object in Appendix A.

• Level III: Line's. A hierarchical organization of the "design" accelerator
structure is implemented as a tree of Line's and GenElement's. A tree
consists of a collection of nodes, instances of class Line. A vector of
physical elements is considered as a leaf in this hierarchy and defines the
corresponding Line's member. The interior node, subtree, is initialized by
concatenation of GenElement's and Line's:

Quadrupole
Sextupole
Line
Line

quadhf
sextl
fullcell
ring

= Iq*L + kql *Kl;
=Is*L + ksl *K2;
=quadhf*sextl*... ;
= fullcell*... ;

• Level IV: Lattice's. This structure represents a flat vector of elements
in one-to-one correspondence with actual physical lattice elements. The
data ofLattElement is implemented as a superposition of design attributes
(GenElement*) and their deviations (ElemAttribute). The class Lattice
also includes the set of pointers to Lattice's. It permits the same lattice
sector to be shared by different rings; as in

[326]/80 N. MALITSKY et al.

Lattice arc1("arc1"), arc2("arc2"), ir("ir"),
ring1("ring1"), ring2("ring2");

ring1 = arc1*ir,
ring2 = arc2*ir;

As shown above, the powerful, object-oriented, features permit this
description to use the same C++ language as is used by the modeling
programs. We regard this as an obvious superiority compared to the present
SIF standard language.

References

[1] Michelotti, L. (1995). Towards C++ Object Libraries for Accelerator Physics (AlP 292).
[2] Iselin, E (1995). The Design ofMAD Version 9.0 (Preliminary Draft).
[3] Carey, D.C. and Iselin, EC. (1984). Standard Input Language for Particle Beam and

Accelerator Computer Programs (Snowmass, Colorado).
[4] Saltmarsh, C. (1994). ISTK Overview and the SDS Document (RHIC AP Note 29).
[5] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, E and Lorensen, W. (1991). Object

Oriented Modeling and Design (Prentice Hall, Englewood Cliffs, NJ).
[6] Malitsky, N., Reshetov, A. and Bourianoff, G. (1994). PAC++: Object-Oriented Platform

for Accelerator Codes (SSCL-675).

W N ~ 0
0 -~ ~ ~ o C

/.:
) r§ f; n tr:
l i ~ o ~ ~ ~ "'"'
3 n tr:
l o to tI1 n "'"'
3
~ o V ~

> ~ ~ ~ ~ ~ (j ~ ~ ~ ~ o := ~ ~ ~ ~ (j ~ o t:= ~ (j ~ ~ o ~ ~ ~

E
le

m
F

un
ct

io
n'

"

P
ar

am
et

er
'"

do
ub

le
(w

ei
gh

t)

E
le

m
A

tt
ri

bu
te

s

D
ic

ti
on

ar
y<

S
tr

in
g,

E
le

m
A

tt
ri

bV
al

ue
>

(l
ea

f)
L

in
e'

"

V
ec

to
r<

L
at

tE
le

m
en

t"
'>

(e
le

m
en

ts
)

(l
at

tic
es

)

P
ac

C
ol

le
ct

io
n<

P
ar

am
et

er
,.

..>
(p

ar
am

et
er

s)

P
ac

C
ol

le
ct

io
n<

E
le

m
F

un
ct

io
n,

...
>

(f
un

ct
io

ns
)

P
ac

C
ol

le
ct

io
n<

G
en

E
le

m
en

t,
...

>
(e

le
m

en
ts

)

L
ev

el
l

P
ac

C
ol

le
ct

io
n<

L
in

e,
...

>
(l

in
es

)

L
ev

el
II

L
ev

el
II

I

P
ac

C
ol

le
ct

io
n<

L
at

ti
ce

,.
..>

L
ev

el
IV

st
at

ic

O
th

er
li

br
ar

ie
s

(a
cc

el
er

at
or

m
et

ho
ds

)

