3 research outputs found

    Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides

    No full text
    We describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides <b>CP</b><sup><b>++</b></sup> and <b>sCP</b><sup><b>++</b></sup> are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (<b>TL</b>) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of ∼10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoring the size of DNA nanostructures. This study presents an attractive strategy to create hybrid biomolecular assemblies from peptide- and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials

    Site-Specific Surface Functionalization of Gold Nanorods Using DNA Origami Clamps

    No full text
    Precise control over surface functionalities of nanomaterials offers great opportunities for fabricating complex functional nanoarchitectures but still remains challenging. In this work, we successfully developed a novel strategy to modify a gold nanorod (AuNR) with specific surface recognition sites using a DNA origami clamp. AuNRs were encapsulated by the DNA origami through hybridization of single-stranded DNA on the AuNRs and complementary capture strands inside the clamp. Another set of capture strands on the outside of the clamp create the specific recognition sites on the AuNR surface. By means of this strategy, AuNRs were site-specifically modified with gold nanoparticles at the top, middle, and bottom of the surface, respectively, to construct a series of well-defined heterostructures with controlled “chemical valence”. Our study greatly expands the utility of DNA origami as a tool for building complex nanoarchitectures and represents a new approach for precise tailoring of nanomaterial surfaces

    Martini 3 Coarse-Grained Force Field for Carbohydrates

    No full text
    The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach
    corecore