1 research outputs found

    Enhanced Artificial Enzyme Activities on the Reconstructed Sawtoothlike Nanofacets of Pure and Pr-Doped Ceria Nanocubes

    Get PDF
    In this work, a simple one-step thermal oxidation process was established to achieve a significant surface increase in {110} and {111} nanofacets on well-defined, pure and Pr-doped, ceria nanocubes. More importantly, without changing most of the bulk properties, this treatment leads to a remarkable boost of their enzymatic activities: from the oxidant (oxidase-like) to antioxidant (hydroxyl radical scavenging) as well as the paraoxon degradation (phosphatase-like) activities. Such performance improvement might be due to the thermally generated sawtoothlike {111} nanofacets and defects, which facilitate the oxygen mobility and the formation of oxygen vacancies on the surface. Finally, possible mechanisms of nanoceria as artificial enzymes have been proposed in this manuscript. Considering the potential application of ceria as artificial enzymes, this thermal treatment may enable the future design of highly efficient nanozymes without changing the bulk composition.This work has been supported by the Ministry of Science, Innovation and Universities of Spain with Reference Numbers of ENE2017-82451-C3-2-R, MAT2016-81118-P and MAT2017-87579-R. The research projects funded by the Natural Science Foundation of Shandong Province (Grant ZR2017LB028), Key R&D Program of Shandong Province (Grant 2018GSF118032), and Fundamental Research Funds for the Central Universities (Grant 18CX02125A) in China are also acknowledged. TEM/STEM data were obtained at DMEUCA node of the Spanish Unique Scientific and Technological Infrastructure (ICTS) of Electron Microscopy of Materials ELECMIM. M. Tinoco thanks the FPU Scholarship Program (Grant AP2010-3737) from Ministry of Education of Spain. H. Pan is grateful for financial support (Grant 201406140130) from the Chinese Scholarship Council to accomplish her Ph.D. study at the University of Cadiz (Spain). J. M. Gonzalez, G. Blanco, and X. Chen are also grateful for the financial support from the joint project (Proyectos Integradores, Grant PI20201) in IMEYMAT of the University of Cadiz
    corecore