259 research outputs found

    The many origins of charge inversion in electrolyte solutions: effects of discrete interfacial charges

    Full text link
    We show that charge inversion, i.e. interfacial charges attracting counterions in excess of their own nominal charge, is a general effect that takes place in most charged systems next to aqueous solutions with multivalent ions and identify three different electrostatic origins for this effect 1) counterion-counterion correlations, 2) correlations between counterions and interfacial charges and 3) complexation. We briefly describe the first two regimes and provide a detailed characterization of the complexation regime from united atom molecular dynamics simulation of a phospholipid domain in contact with an aqueous solution. We examine the expected conditions where each regime should apply and describe a representative experimental example to illustrate each case. We point out that our results provide a characterization of ionic distributions irrespectively of whether charge inversion takes place and show that processes such as proton release and transfer are also linked to ionic correlations. We conclude with a discussion of further experimental and theoretical implications.Comment: 22 pages, 7 figure

    Dynamics and Instabilities of Defects in Two-Dimensional Crystals on Curved Backgrounds

    Get PDF
    Point defects are ubiquitous in two dimensional crystals and play a fundamental role in determining their mechanical and thermodynamical properties. When crystals are formed on a curved background, finite length grain boundaries (scars) are generally needed to stabilize the crystal. We provide a continuum elasticity analysis of defect dynamics in curved crystals. By exploiting the fact that any point defect can be obtained as an appropriate combination of disclinations, we provide an analytical determination of the elastic spring constants of dislocations within scars and compare them with existing experimental measurements from optical microscopy. We further show that vacancies and interstitials, which are stable defects in flat crystals, are generally unstable in curved geometries. This observation explains why vacancies or interstitials are never found in equilibrium spherical crystals. We finish with some further implications for experiments and future theoretical work.Comment: 9 pages, 11 eps figures, REVTe

    Electrostatic correlations at the Stern layer: Physics or chemistry?

    Get PDF
    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson–Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge (“chemical binding”). It is shown that the “chemical” model can be appropriately described by an underlying “physical” model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The charged phospholipid phosphatidylserine is analyzed as a concrete example with good agreement with experimental results. We conclude with a detailed discussion on the limitations of chemical or physical models for describing the rich phenomenology of charged interfaces in aqueous media and its relevance to different systems with a particular emphasis on phospholipids

    Micellar Crystals in Solution from Molecular Dynamics Simulations

    Full text link
    Polymers with both soluble and insoluble blocks typically self-assemble into micelles, aggregates of a finite number of polymers where the soluble blocks shield the insoluble ones from contact with the solvent. Upon increasing concentration, these micelles often form gels that exhibit crystalline order in many systems. In this paper, we present a study of both the dynamics and the equilibrium properties of micellar crystals of triblock polymers using molecular dynamics simulations. Our results show that equilibration of single micelle degrees of freedom and crystal formation occurs by polymer transfer between micelles, a process that is described by transition state theory. Near the disorder (or melting) transition, bcc lattices are favored for all triblocks studied. Lattices with fcc ordering are also found, but only at lower kinetic temperatures and for triblocks with short hydrophilic blocks. Our results lead to a number of theoretical considerations and suggest a range of implications to experimental systems with a particular emphasis on Pluronic polymers.Comment: 12 pages, 11 figures. Note that some figures are extremely low quality to meet arXiv's file size limit

    The Tubular Phase of Self-Avoiding Anisotropic Crystalline Membranes

    Get PDF
    We analyze the tubular phase of self-avoiding anisotropic crystalline membranes. A careful analysis using renormalization group arguments together with symmetry requirements motivates the simplest form of the large-distance free energy describing fluctuations of tubular configurations. The non-self-avoiding limit of the model is shown to be exactly solvable. For the full self-avoiding model we compute the critical exponents using an epsilon-expansion about the upper critical embedding dimension for general internal dimension D and embedding dimension d. We then exhibit various methods for reliably extrapolating to the physical point (D=2,d=3). Our most accurate estimates are nu=0.62 for the Flory exponent and zeta=0.80 for the roughness exponent
    • …
    corecore