158 research outputs found

    Resuscitation of Severe Uncontrolled Hemorrhage 7.5% Sodium Chloride/6% Dextran 70 vs 0.9% Sodium Chloride

    Full text link
    Objectives: Resuscitation studies of hypertonic saline using controlled and uncontrolled hemorrhage models yield conflicting results with regard to efficacy. These disparate results reflect the use of models and resuscitation regimens that are not comparable between studies. This study evaluated the effects of comparable and clinically relevant resuscitation regimens of 7.5% sodium chloride/6% dextran 70 (HSD) and 0.9% sodium chloride (NS) in a near-fatal uncontrolled hemorrhage model. Methods: Thirty-six swine (14.2 to 21.4 kg) with 4-mm aortic tears were bled to a pulse pressure of 5 mm Hg (40-45 mL/kg). The animals were resuscitated with either NS or HSD administered in volumes that provided equivalent sodium loads at similar rates. Group II (n = 12) was resuscitated with 80 mL/kg of NS at a rate of 4 mL/kg/min. Group III (n = 12) received 9.6 mL/kg of HSD at a rate of 0.48 mL/kg/min. In both groups, crystalloid resuscitation was followed by shed blood infusion (30 mL/kg) at a rate of 2 mL/kg/min. Group I (controls; n = 12) were not resuscitated. Results: One-hour mortality was significantly greater in group I (92%) as compared with group II (33%) and group III (33%) (Fisher's exact test; p = 0.004). Intraperitoneal hemorrhage was significantly greater in group II (34 ± 20 mL/kg) and group III (31 ± 13 mL/kg) as compared with group I (5 ± 2 mL/kg) (ANOVA; p < 0.05). There was no significant difference in hemodynamic parameters between groups II and III. Conclusion: In this model of severe uncontrolled hemorrhage, resuscitation with HSD or NS, administered in volumes that provided equivalent sodium loads at similar rates, had similar effects on mortality, hemodynamic parameters, and hemorrhage from the injury site.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73625/1/j.1553-2712.2000.tb02060.x.pd

    Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Get PDF
    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase
    • …
    corecore