924 research outputs found

    Effects of tin phosphate nanosheet addition on proton-conducting properties of sulfonated poly(ether sulfone) membranes

    Get PDF
    Organic/inorganic composite membranes were prepared by dispersing nanosheets of layered tin phosphate hydrate [Sn(HPO4)2·nH2O (SnP)] in sulfonated poly(ether sulfone) (SPES) at SnP contents of 0–40 vol.%. The stabilities and proton conductivities of SPES/SnP nanosheet (SnP-NS) composite membraneswere investigated and comparedwith those of SPES/SnP particle (SnP-P) composite membranes. The chemical stabilities as evaluated by thermogravimetry, differential thermal analysis, and diffuse reflectance Fourier-transform infrared spectroscopy were improved in both composite membranes. The improvement in the structural stability of SPES/SnP-NS composite membranes was more evident than that in SPES/SnP-P. The results suggest that exfoliation of SnP increases the area of the SPES–SnP interface and extends the connectivity of the network of hydrogen bonds. A composite membrane containing 10 vol.% SnP-NS (SPES/SnP-NS10vol.%) showed a high conductivity of 5.9×10−2 S cm−1 at 150 °C under saturated water vapor pressure. Although less water was present in SPES/SnP-NS10vol.% than in SPES/SnP-P10vol.% or pure SPES, the conductivity of SnP-NS10vol.% was the highest among these samples at 130 °C under a high relative humidity (RH). However at a low RH, the proton-conducting property was not improved by changing the composition of the SnP-NS. These results suggest that the hydrogen-bond network operates effectively for proton conduction at a high RH, but at a low RH, the network fails to conduct as a result of a decrease in water content accompanied by structural stabilization

    A generalized drift-diffusion model for rectifying Schottky contact simulation

    Get PDF
    We present a discussion on the modeling of Schottky barrier rectifying contacts (diodes) within the framework of partial-differential-equation-based physical simulations. We propose a physically consistent generalization of the drift-diffusion model to describe the boundary layer close to the Schottky barrier where thermionic emission leads to a non-Maxwellian carrier distribution, including a novel boundary condition at the contact. The modified drift-diffusion model is validated against Monte Carlo simulations of a GaAs device. The proposed model is in agreement with the Monte Carlo simulations not only in the current value but also in the spatial distributions of microscopic quantities like the electron velocity and concentratio

    Quantitative determination of the adhesive fracture toughness of CVD diamond to WC-Co cemented carbide

    Get PDF
    Well-separated diamond particles were nucleated and grown by hot filament chemical vapor deposition (HFCVD) onto WC-Co cemented carbide pretreated by Murakami's reagent and H2O2 + H2SO4 solution. The adhesive strength of diamond particles to WC-Co cemented carbide was quantitatively determined in terms of interface toughness by directly applying an external load to the CVD diamond particles. From the measurement of the maximum load required to scratch off the particles, we determined that the adhesive toughness was 14 J/m(2). This value is more than twice as high as that of CVD diamond on smooth silicon substrate and comparable to the cleavage fracture energy of diamond. The newly developed procedure will allow to check the effectiveness of substrate surface pretreatments for further improving the adhesion level of diamond films on WC-Co. (C) 2000 Elsevier Science S.A. All rights reserved

    Two-Point Versus Multipartite Entanglement in Quantum Phase Transitions

    Get PDF
    We analyze correlations between subsystems for an extended Hubbard model exactly solvable in one dimension, which exhibits a rich structure of quantum phase transitions (QPTs). The T=0 phase diagram is exactly reproduced by studying singularities of single-site entanglement. It is shown how comparison of the latter quantity and quantum mutual information allows one to recognize whether two-point or shared quantum correlations are responsible for each of the occurring QPTs. The method works in principle for any number D of degrees of freedom per site. As a by-product, we are providing a benchmark for direct measures of bipartite entanglement; in particular, here we discuss the role of negativity at the transition.Comment: 4 pages, 2 figures, 1 tabl

    Y and Ni Co-doped BaZrO3 as a proton-conducting solid oxide fuel cell electrolyte exhibiting superior power performance

    Get PDF
    The fabrication of anode supported single cells based on BaZr0.8Y0.2O3-δ (BZY20) electrolyte is challenging due to its poor sinteractive nature. The acceleration of shrinkage behavior, improved sinterability and larger grain size were achieved by the partial substitution of Zr with Ni in the BZY perovskite. Phase pure Ni-doped BZY powders of nominal compositions BaZr0.8-xY0.2NixO3-δ were synthesized up to x = 0.04 using a wet chemical combustion synthesis route. BaZr0.76Y0.2Ni0.04O3-δ (BZYNi04) exhibited adequate total conductivity and the open circuit voltage (OCV) values measured on the BZYNi04 pellet suggested lack of significant electronic contribution. The improved sinterability of BZYNi04 assisted the ease in film fabrication and this coupled with the application of an anode functional layer and a suitable cathode, PrBaCo2O5+δ (PBCO), resulted in a superior fuel cell power performance. With humidified hydrogen and static air as the fuel and oxidant, respectively, a peak power density value of 428 and 240 mW cm-2 was obtained at 700 and 600°C, respectively

    Co-sintering of dense electrophoretically deposited YSZ films on porous NiO-YSZ substrates for SOFC applications

    Get PDF
    An original process for the preparation of YSZ dense films with a thickness lower than 10 Οm over NiO-YSZ substrates is presented. This process involves the preparation of a green membrane of NiO-YSZ and subsequent electrophoretic deposition (EPD) of commercial YSZ powder on this polymer-rich membrane. A single thermal treatment allowed removal of the organic compounds, sintering of the layers and full densification of the electrolyte. Š 2005 Materials Research Society

    Electrochemical characterization of anode supported SOFC prepared by co-firing technique

    Get PDF
    One of the main problems in the fabrication of anode supported solid oxide fuel cells is related to the sintering of electrolyte layer on anodic substrate, because differential densification of the layers may result in cracks during thermal process. Co-firing approach consists of simultaneous sintering of both electrolyte and anode. In this way, shrinkage of porous layer is compatible with the densification of electrolyte film. In this work co-firing technique was used for the sintering of YSZ thick films deposited on green NiO-YSZ layers by electrophoretic deposition (EPD). EPD is a colloidal process based on the motion of charged particles in the electric field in the direction of the electrode with opposite charge, thus forming a compact layer. With respect to other techniques, EPD has several advantages: short formation times, little restriction in the shape of substrates, simple deposition apparatus, possibility to have a mass production, low cost, easy control of the thickness of the deposited film through simple regulation of applied potential and deposition time. The EPD/co-firing combined process allowed to obtain a dense, 10 Îźm thick, crack free electrolyte layer with a good bonding to the anode. A slurry was prepared starting from a commercial NiOYSZ anodic powder (Praxair), polyvinylidene fluoride (PVDF binder SOLEF 6020, Solvay), a nanometric carbon powder (super P, Carbon Belgium), dispersed in N-methyl-2-pyrrolidone. A green membrane was obtained after evaporation of the solvent. A suspension of YSZ powder was prepared starting from commercial YSZ (TZ8Y, Tosoh) in methanol and deposited by EPD on a green NiO-YSZ membrane using a planar EPD cell setup. Co-firing parameters were assessed from the results of TG-DTA analysis performed on green bodies. Figure 1 shows the results of Hg porosimetry performed on sintered anodes for the determination of residual porosity and surface area. Green and fired samples were characterized in terms of morphology by scanning electron microscopy (FE-SEM), as reported in Figure 2. EDS linescan performed on the cross section of the cell did not show nickel diffusion in the electrolyte layer. A cathode layer was deposited on fully sintered half cells via spray-powder technique, using a suspension of commercial LSFC powder (Nextech), followed by a low temperature sintering process. Electrochemical characterization was performed on button cells in hydrogen in the temperature range 600-800 degrees C. Data of the electrochemical characterization will be presented at the conference

    Tailoring phase stability and electrical conductivity of Sr0.02La0.98Nb1–xTaxO4 for intermediate temperature fuel cell proton conducting electrolytes

    Get PDF
    Sr0.02La0.98Nb1–-xTaxO4 (SLNT, with x=0.1, 0.2, and 0.4) proton conducting oxides were synthesized by solid state reaction for application as electrolyte in solid oxide fuel cells operating below 600 °C. Dense pellets were obtained after sintering at 1600 °C for 5 h achieving a larger average grain size with increasing the tantalum content. Dilatometric measurements were used to obtain the SLNT expansion coefficient as a function of tantalum content (x), and it was found that the phase transition temperature increased with increasing the tantalum content, being T=561, 634, and 802 °C for x=0.1, 0.2, and 0.4, respectively. The electrical conductivity of SLNT was measured by electrochemical impedance spectroscopy as a function of temperature and tantalum concentration under wet (pH2O of about 0.03 atm) Ar atmosphere. At each temperature, the conductivity decreased with increasing the tantalum content, at 600 °C being 2.68×10−4, 3.14×10−5, and 5.41×10−6 Scm−1 for the x=0.1, 0.2, and 0.4 compositions, respectively. SLNT with x=0.2 shows a good compromise between proton conductivity and the requirement of avoiding detrimental phase transitions for application as a thin-film electrolyte below 600 °C

    Mixed trichuroid infestation in a dog from Italy

    Get PDF
    Background: Capillaria aerophila, Capillaria boehmi and Trichuris vulpis are trichuroid nematodes affecting wild and companion animals all over the World. The canine intestinal whipworm, T. vulpis, is the most common and wellknown in veterinary practice, whereas the respiratory C. aerophila and C. boehmi have been rarely reported in pets as a likely consequence of overlapping morphometric and morphological features of the eggs, which impair a correct etiological diagnosis. Findings: In December 2011, a mixed infestation by T. vulpis, C. aerophila and C. boehmi was diagnosed in an asymptomatic dog living in central Italy. Morphometric and morphological findings and pictures of the eggs found at the copromicroscopic analysis are herein reported. Conclusions: The present work demonstrates that when trichuroid eggs are found in a faecal sample from a dog, a careful morphological and morphometric analysis of individual parasite elements is mandatory. Key diagnostic features (i.e., size, wall surface pattern and aspects of plugs) should be carefully examined when eggs with overlapping shape and appearance are detected. In conclusion, given the importance in clinical practice of canine trichuroids and the zoonotic potential of C. aerophila, these nematodes should be included into the differential diagnosis of intestinal and respiratory parasitoses of dogs by a thorough microscopic analysis of all trichuroid ova present in microscopic fields

    A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization

    Get PDF
    Commercial polyetheretherketone (Victrex PEEK) was sulfonated up to 90% degree of sulfonation (DS), then reacted with SiCl4 to obtain a hybrid polymer. The product was characterized by 29-Si NMR and ATR/FTIR spectroscopies demonstrating the formation of covalent bonds between the organic and inorganic components. No dispersed inorganic silicon was present in the product as evidenced by the lack of any resonance at 100 ppm. Despite the high DS the physicochemical properties of the hybrid were suitable for the preparation of membranes exhibiting high and stable conductivity values (10K2 S/cm), hence suitable for application as ion exchange membrane
    • …
    corecore