1,138 research outputs found
A Complete Characterization of Irreducible Cyclic Orbit Codes and their Pl\"ucker Embedding
Constant dimension codes are subsets of the finite Grassmann variety. The
study of these codes is a central topic in random linear network coding theory.
Orbit codes represent a subclass of constant dimension codes. They are defined
as orbits of a subgroup of the general linear group on the Grassmannian. This
paper gives a complete characterization of orbit codes that are generated by an
irreducible cyclic group, i.e. a group having one generator that has no
non-trivial invariant subspace. We show how some of the basic properties of
these codes, the cardinality and the minimum distance, can be derived using the
isomorphism of the vector space and the extension field. Furthermore, we
investigate the Pl\"ucker embedding of these codes and show how the orbit
structure is preserved in the embedding.Comment: submitted to Designs, Codes and Cryptograph
V2:Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz
The performance of the solid deuterium ultra-cold neutron source at the
pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described.
The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is
exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000
UCN per pulse outside of the biological shield at the experimental area. UCN
densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L
resulting in a storage efficiency of ~20%. The measured UCN yields compare well
with the predictions from a Monte Carlo simulation developed to model the
source and to optimize its performance for the upcoming upgrade of the TRIGA
Mainz into a user facility for UCN physics.Comment: 23 pages, 8 figure
Feshbach spectroscopy and scattering properties of ultracold Li+Na mixtures
We have observed 26 interspecies Feshbach resonances at fields up to 2050 G
in ultracold Li+Na mixtures for different spin-state combinations.
Applying the asymptotic bound-state model to assign the resonances, we have
found that most resonances have d-wave character. This analysis serves as
guidance for a coupled-channel calculation, which uses modified interaction
potentials to describe the positions of the Feshbach resonances well within the
experimental uncertainty and to calculate their widths. The scattering length
derived from the improved interaction potentials is experimentally confirmed
and deviates from previously reported values in sign and magnitude. We give
prospects for Li+Na and predict broad Feshbach resonances suitable
for tuning.Comment: 8 pages, 4 figures, version as published in PR
Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium
We have studied magnetic Feshbach resonances in an ultracold sample of Na
prepared in the absolute hyperfine ground state. We report on the observation
of three s-, eight d-, and three g-wave Feshbach resonances, including a more
precise determination of two known s-wave resonances, and one s-wave resonance
at a magnetic field exceeding 200mT. Using a coupled-channels calculation we
have improved the sodium ground-state potentials by taking into account these
new experimental data, and derived values for the scattering lengths. In
addition, a description of the molecular states leading to the Feshbach
resonances in terms of the asymptotic-bound-state model is presented.Comment: 11 pages, 4 figure
Preliminary Report of the AMS analysis of tsunami deposits in Tohoku – Japan – 18 th to the 21 st Century
Sedimentary records of tsunamis are a precious tool to assess the occurrence of past events, as attested by an abundant literature, which has seen a particular 'boom' in the aftermath of the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Despite an extensive literature, there is very little to no understanding of the role that the changing coastal environment is playing on the record of a tsunami, and for a given location, it is still unclear whether the largest tsunamis leave the largest amount of deposits. To research this question, the present study took place in Japan, in the Tohoku Region at Agawa-pond, because the pond act as a sediment trap. Using a sediment-slicer, a 1 m thick deposit was retrieved, from which 4 tsunami sequences were identified, including the latest 2011 tsunami. Using a series of sedimentary proxies: the AMS (Anisotropy of Magnetic Susceptibility), grain size analysis, quartz morphoscopy (morphology and surface characteristics) and the analysis of microfossils, disparities between the tsunami deposits were identified and most importantly a clear thinning of the tsunami deposit towards the top. Provided the present evidences, the authors discuss that the upward fining is due to at least two components that are seldom assessed in tsunami research (1) a modification of the depositional environment, with the progressive anthropization of the coast, providing less sediments to remobilize; and (2) a progressive filling of the Agawa pond, which progressively loses its ability to trap tsunami materials
An Algebraic Approach for Decoding Spread Codes
In this paper we study spread codes: a family of constant-dimension codes for
random linear network coding. In other words, the codewords are full-rank
matrices of size (k x n) with entries in a finite field F_q. Spread codes are a
family of optimal codes with maximal minimum distance. We give a
minimum-distance decoding algorithm which requires O((n-k)k^3) operations over
an extension field F_{q^k}. Our algorithm is more efficient than the previous
ones in the literature, when the dimension k of the codewords is small with
respect to n. The decoding algorithm takes advantage of the algebraic structure
of the code, and it uses original results on minors of a matrix and on the
factorization of polynomials over finite fields
Resonance ionization spectroscopy of thorium isotopes - towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of Th-229
In-source resonance ionization spectroscopy was used to identify an efficient
and selective three step excitation/ionization scheme of thorium, suitable for
titanium:sapphire (Ti:sa) lasers. The measurements were carried out in
preparation of laser spectroscopic investigations for an identification of the
low-lying Th-229m isomer predicted at 7.6 +- 0.5 eV above the nuclear ground
state. Using a sample of Th-232, a multitude of optical transitions leading to
over 20 previously unknown intermediate states of even parity as well as
numerous high-lying odd parity auto-ionizing states were identified. Level
energies were determined with an accuracy of 0.06 cm-1 for intermediate and
0.15 cm-1 for auto-ionizing states. Using different excitation pathways an
assignment of total angular momenta for several energy levels was possible. One
particularly efficient ionization scheme of thorium, exhibiting saturation in
all three optical transitions, was studied in detail. For all three levels in
this scheme, the isotope shifts of the isotopes Th-228, Th-229, and Th-230
relative to Th-232 were measured. An overall efficiency including ionization,
transport and detection of 0.6 was determined, which was predominantly limited
by the transmission of the mass spectrometer ion optics
The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary
Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of human, great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) and Old World monkeys (Macaca fuscata andCercopithecus aethiops). Inversions were found in the pericentric region of the primate chromosome 2p homologs in great apes, and the hybridization pattern demonstrates the known phylogenetically derived telomere fusion in the line that leads to human chromosome 2. The hybridization of the 2q microlibrary to chromosomes of Old World monkeys gave a different pattern from that in the gorilla and the orang-utan, but a pattern similar to that of chimpanzees. This suggests convergence of chromosomal rearrangements in different phylogenetic lines
Multiple electromagnetic electron positron pair production in relativistic heavy ion collisions
We calculate the cross sections for the production of one and more
electron-positron pairs due to the strong electromagnetic fields in
relativistic heavy ion collisions. Using the generating functional of fermions
in an external field we derive the N-pair amplitude. Neglecting the
antisymmetrisation in the final state we find that the total probability to
produce N pairs is a Poisson distribution. We calculate total cross sections
for the production of one pair in lowest order and also include higher-order
corrections from the Poisson distribution up to third order. Furthermore we
calculate cross sections for the production of up to five pairs including
corrections from the Poisson distribution.Comment: 13 pages REVTeX, 4 Postscript figures, This and related papers may
also be obtained from http://www.phys.washington.edu/~hencken
- …