30 research outputs found

    Continuous symmetry of C60 fullerene and its derivatives

    Full text link
    Conventionally, the Ih symmetry of fullerene C60 is accepted which is supported by numerous calculations. However, this conclusion results from the consideration of the molecule electron system, of its odd electrons in particular, in a close-shell approximation without taking the electron spin into account. Passing to the open-shell approximation has lead to both the energy and the symmetry lowering up to Ci. Seemingly contradicting to a high-symmetry pattern of experimental recording, particularly concerning the molecule electronic spectra, the finding is considered in the current paper from the continuous symmetry viewpoint. Exploiting both continuous symmetry measure and continuous symmetry content, was shown that formal Ci symmetry of the molecule is by 99.99% Ih. A similar continuous symmetry analysis of the fullerene monoderivatives gives a reasonable explanation of a large variety of their optical spectra patterns within the framework of the same C1 formal symmetry exhibiting a strong stability of the C60 skeleton.Comment: 11 pages. 5 figures. 6 table

    Wet winter pore pressures in railway embankments

    Get PDF
    This paper demonstrates the influence of extreme wet winter weather on pore water pressures within clay fill railway embankments, using field monitoring data and numerical modelling. Piezometer readings taken across the London Underground Ltd network following the wet winter of 2000/2001 were examined, and showed occurrences of hydrostatic pore water pressure within embankments but also many readings below this. A correlation was found between the maximum pore water pressures and the permeability of the embankment foundation soil, with high permeability foundation soils (of Chalk or river terrace deposits) providing underdrainage and maintaining low pore water pressures within the overlying clay embankment fill. Numerical modelling of transient water flow in response to a climate boundary condition supports this conclusion and has been used to demonstrate the influence of clay fill and underlying foundation permeability on transient pore water pressures during extreme (c. 1 in 100 year) and intermediate (c. 1 in 10 year) wet winter rainfall. For clay founded embankments, extreme wet winter conditions increased pore water pressures significantly compared with an intermediate winter, while for embankments underlain by a permeable stratum pore water pressures were less sensitive to the extreme winter rainfall
    corecore