15 research outputs found

    Comparison of perturbative expansions using different phonon bases for two-site Holstein model

    Full text link
    The two-site single-polaron problem is studied within the perturbative expansions using different standard phonon basis obtained through the Lang Firsov (LF), modified LF (MLF) and modified LF transformation with squeezed phonon states (MLFS). The role of these convergent expansions using the above prescriptions in lowering the energy and in determining the correlation functions are compared for different values of coupling strength. The single-electron energy, oscillator wave functions and correlation functions are calculated for the same system. The applicability of different phonon basis in different regimes of the coupling strength as well as in different regimes of hopping are also discussed.Comment: 24 pages (RevTEX), 12 postscript figures, final version accepted in PRB(2000) Jornal Ref: Phys. Rev. B, 61, 4592-4602 (2000

    Polarons and bipolarons in strongly interacting electron-phonon systems

    Full text link
    The Holstein Hubbard and Holstein t--J models are studied for a wide range of phonon frequencies, electron--electron and electron--phonon interaction strengths on finite lattices with up to ten sites by means of direct Lanczos diagonalization. Previously the necessary truncation of the phononic Hilbert space caused serious limitations to either very small systems (four or even two sites) or to weak electron--phonon coupling, in particular in the adiabatic regime. Using parallel computers we were able to investigate the transition from `large' to `small' polarons in detail. By resolving the low--lying eigenstates of the Hamiltonian and by calculating the spectral function we can identify a polaron band in the strong--coupling case, whose dispersion deviates from the free--particle dispersion at low and intermediate phonon frequencies. For two electrons (holes) we establish the existence of bipolaronic states and discuss the formation of a bipolaron band. For the 2D Holstein t--J model we demonstrate that the formation of hole--polarons is favoured by strong Coulomb correlations. Analyzing the hole--hole correlation functions we find that hole binding is enhanced as a dynamical effect of the electron--phonon interaction.Comment: 23 pages (Revtex) with 13 figures (ps, uuencoded

    Spin and Charge Structure Factor of the 2-d Hubbard Model

    Full text link
    The spin and charge structure factors are calculated for the Hubbard model on the square lattice near half-filling using a spin-rotation invariant six-slave boson representation. The charge structure factor shows a broad maximum at the zone corner and is found to decrease monotonically with increasing interaction strength and electron density and increasing temperature. The spin structure factor develops with increasing interaction two incommensurate peaks at the zone boundary and along the zone diagonal. Comparison with results of Quantum Monte Carlo and variational calculations is carried out and the agreement is found to be good. The limitations of an RPA-type approach are pointed out.Comment: 18 pages, revtex, 13 postscript figures, submitted to Phys. Rev.

    Optical absorption and single-particle excitations in the 2D Holstein t-J model

    Full text link
    To discuss the interplay of electronic and lattice degrees of freedom in systems with strong Coulomb correlations we have performed an extensive numerical study of the two-dimensional Holstein t-J model. The model describes the interaction of holes, doped in a quantum antiferromagnet, with a dispersionsless optical phonon mode. We apply finite-lattice Lanczos diagonalization, combined with a well-controlled phonon Hilbert space truncation, to the Hamiltonian. The focus is on the dynamical properties. In particular we have evaluated the single-particle spectral function and the optical conductivity for characteristic hole-phonon couplings, spin exchange interactions and phonon frequencies. The results are used to analyze the formation of hole polarons in great detail. Links with experiments on layered perovskites are made. Supplementary we compare the Chebyshev recursion and maximum entropy algorithms, used for calculating spectral functions, with standard Lanczos methods.Comment: 32 pages, 12 figures, submitted to Phys. Rev.

    A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method

    Full text link
    We have investigated the antiferromagnetic phase of the 2D, the 3D and the extended Hubbard models on a bipartite cubic lattice by means of the Composite Operator Method within a two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as regards the antiferromagnetic and the paramagnetic phases, has been drawn. We firstly reported, within a pole approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase. This latter is restricted to a very small region near half filling and has, in contrast to what has been found by similar approaches, a finite critical Coulomb interaction as lower bound at half filling. Finally, it is worth noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic correlations and another coming from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.

    Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model

    Full text link
    Slave boson calculations have been carried out in the three-band tJ model for the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode phonons. Phonon-induced Van Hove nesting leads to a phase separation between a hole-doped domain and a (magnetic) domain near half filling, with long-range Coulomb forces limiting the separation to a nanoscopic scale. Strong correlation effects pin the Fermi level close to, but not precisely at the Van Hove singularity (VHS), which can enhance the tendency to phase separation. The resulting dispersions have been calculated, both in the uniform phases and in the phase separated regime. In the latter case, distinctly different dispersions are found for large, random domains and for regular (static) striped arrays, and a hypothetical form is presented for dynamic striped arrays. The doping dependence of the latter is found to provide an excellent description of photoemission and thermodynamic experiments on pseudogap formation in underdoped cuprates. In particular, the multiplicity of observed gaps is explained as a combination of flux phase plus charge density wave (CDW) gaps along with a superconducting gap. The largest gap is associated with VHS nesting. The apparent smooth evolution of this gap with doping masks a crossover from CDW-like effects near optimal doping to magnetic effects (flux phase) near half filling. A crossover from large Fermi surface to hole pockets with increased underdoping is found. In the weakly overdoped regime, the CDW undergoes a quantum phase transition (TCDW→0T_{CDW}\to 0), which could be obscured by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes, esp. in Sect. 3, Figs 1-4,6 replace

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    How long should older people take antidepressants to prevent relapse? Por quanto tempo os idosos devem tomar antidepressivos para evitar recaĂ­das?

    No full text
    Patients with depressive disorder have a high risk of relapse after recovery from a depressive episode. Can the relapse of depressive disorder be prevented or delayed for older adults? This paper reviews the evidence from randomised clinical trials and open label trials of the effectiveness of maintenance antidepressant therapy for older adults with depressive disorder. It also examines the evidence for the effectiveness of psychosocial and psychotherapeutic interventions. The paper concludes with recommendations for clinical practice and future research.<br>Pacientes com transtorno depressivo apresentam alto risco de recorrência e recaída. É possível prevenir a recaída ou a recorrência do episódio depressivo ou retardá-lo em fases tardias da vida? Este artigo revisa ensaios clínicos aleatorizados e não-aleatorizados com o objetivo de estabelecer se o tratamento antidepressivo de manutenção reduz o risco de recaída e recorrência de depressão em idosos. O artigo também examina a evidência atualmente disponível sobre a eficácia das intervenções psicossociais e psicoterapêuticas. O artigo conclui com recomendações para a prática clínica e pesquisas futuras
    corecore