274 research outputs found
A new functional role for lateral inhibition in the striatum: Pavlovian conditioning
The striatum has long been implicated in reinforcement learning and has been suggested by several neurophysiological studies as the substrate for encoding the reward value of stimuli. Reward prediction error (RPE) has been used in several basal ganglia models as the underlying learning signal, which leads to Pavlovian conditioning abilities that can be simulated by the Rescorla-Wagner model.

Lateral inhibition between striatal projection neurons was once thought to have a winner-take-all function, useful in selecting between possible actions. However, it has been noted that the necessary reciprocal connections for this interpretation are too few, and the relative strength of these synaptic connections is weak. Still, modeling studies show that lateral inhibition does have an overall suppression effect on striatal activity and may play an important role in striatal processing. 

Neurophysiological recordings show task-relevant ensembles of responsive neurons at specific points in a behavioral paradigm (Barnes et al., 2005), which appear to be induced by lateral inhibition (see Ponzi and Wickens, 2010). We have developed a similarly responding, RPE-based model of the striatum by incorporating lateral inhibition. Model neurons are assigned to either the direct or the indirect pathway but lateral connections occur within and between these groups, leading to competition between both the individual neurons and their pathways. We successfully applied this model to the simulation of Pavlovian phenomena beyond those of the Rescorla-Wagner model, including negative patterning, unovershadowing, and external inhibition
The confined-deconfined interface tension, wetting, and the spectrum of the transfer matrix
The reduced tension of the interface between the confined and
the deconfined phase of pure gauge theory is determined from numerical
simulations of the first transfer matrix eigenvalues. At we find
for . The interfaces show universal
behavior because the deconfined-deconfined interfaces are completely wet by the
confined phase. The critical exponents of complete wetting follow from the
analytic interface solutions of a -symmetric model in three
dimensions. We find numerical evidence that the confined-deconfined interface
is rough.Comment: Talk presented at the International Conference on Lattice Field
Theory, Lattice 92, to be published in the proceedings, 4 pages, 4 figures,
figures 2,3,4 appended as postscript files, figure 1 not available as a
postscript file but identical with figure 2 of Nucl. Phys. B372 (1992) 703,
special style file espcrc2.sty required (available from hep-lat), BUTP-92/4
Numerical simulation of heavy fermions in an SU(2)_L x SU(2)_R symmetric Yukawa model
An exploratory numerical study of the influence of heavy fermion doublets on
the mass of the Higgs boson is performed in the decoupling limit of a chiral
symmetric Yukawa model with mirror fermions. The
behaviour of fermion and boson masses is investigated at infinite bare quartic
coupling on , and lattices. A first
estimate of the upper bound on the renormalized quartic coupling as a function
of the renormalized Yukawa-coupling is given.Comment: 15 pp + 11 Figures appended as Postscript file
Complete Wetting of Gluons and Gluinos
Complete wetting is a universal phenomenon associated with interfaces
separating coexisting phases. For example, in the pure gluon theory, at
an interface separating two distinct high-temperature deconfined phases splits
into two confined-deconfined interfaces with a complete wetting layer of
confined phase between them. In supersymmetric Yang-Mills theory, distinct
confined phases may coexist with a Coulomb phase at zero temperature. In that
case, the Coulomb phase may completely wet a confined-confined interface.
Finally, at the high-temperature phase transition of gluons and gluinos,
confined-confined interfaces are completely wet by the deconfined phase, and
similarly, deconfined-deconfined interfaces are completely wet by the confined
phase. For these various cases, we determine the interface profiles and the
corresponding complete wetting critical exponents. The exponents depend on the
range of the interface interactions and agree with those of corresponding
condensed matter systems.Comment: 15 pages, 5 figure
A Multicanonical Algorithm and the Surface Free Energy in SU(3) Pure Gauge Theory
We present a multicanonical algorithm for the SU(3) pure gauge theory at the
deconfinement phase transition. We measure the tunneling times for lattices of
size L^3x2 for L=8,10, and 12. In contrast to the canonical algorithm the
tunneling time increases only moderately with L. Finally, we determine the
interfacial free energy applying the multicanonical algorithm.Comment: 6 pages, HLRZ-92-3
- …