325 research outputs found

    Bayesian Learning of Sum-Product Networks

    Full text link
    Sum-product networks (SPNs) are flexible density estimators and have received significant attention due to their attractive inference properties. While parameter learning in SPNs is well developed, structure learning leaves something to be desired: Even though there is a plethora of SPN structure learners, most of them are somewhat ad-hoc and based on intuition rather than a clear learning principle. In this paper, we introduce a well-principled Bayesian framework for SPN structure learning. First, we decompose the problem into i) laying out a computational graph, and ii) learning the so-called scope function over the graph. The first is rather unproblematic and akin to neural network architecture validation. The second represents the effective structure of the SPN and needs to respect the usual structural constraints in SPN, i.e. completeness and decomposability. While representing and learning the scope function is somewhat involved in general, in this paper, we propose a natural parametrisation for an important and widely used special case of SPNs. These structural parameters are incorporated into a Bayesian model, such that simultaneous structure and parameter learning is cast into monolithic Bayesian posterior inference. In various experiments, our Bayesian SPNs often improve test likelihoods over greedy SPN learners. Further, since the Bayesian framework protects against overfitting, we can evaluate hyper-parameters directly on the Bayesian model score, waiving the need for a separate validation set, which is especially beneficial in low data regimes. Bayesian SPNs can be applied to heterogeneous domains and can easily be extended to nonparametric formulations. Moreover, our Bayesian approach is the first, which consistently and robustly learns SPN structures under missing data.Comment: NeurIPS 2019; See conference page for supplemen

    Constitutional Aspect of the Debate over Jay's Treaty

    Get PDF
    This study is intended to provide an in-depth account of the constitutional questions debated during the controversy over Jay's Treaty in 1795-1796. The primary objective is to show the significance of this aspect of the struggle over the treaty. The author feels that previous discussions on this formative event in the development of the American party system have tended to overlook the vital role of this split over constitutional interpretation that was involved. The general feeling shared by Federalists and Republicans that the other side were "anarchists" and "monarchists" was greatly enhanced during this debate when each thought that the other sought the destruction of the Constitution. � From this, the a.uthor would make a further conjecture that this event, by the polarization resulting from its bitter atmosphere, tended to have a stagnating effect on the operation of a mature two-party system. Finally, it will hopefully be shown here that the Federalists considered themselves to be as much "republicans" as the Jeffersonian Republicans.Histor

    Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks

    Get PDF
    While Gaussian processes (GPs) are the method of choice for regression tasks, they also come with practical difficulties, as inference cost scales cubic in time and quadratic in memory. In this paper, we introduce a natural and expressive way to tackle these problems, by incorporating GPs in sum-product networks (SPNs), a recently proposed tractable probabilistic model allowing exact and efficient inference. In particular, by using GPs as leaves of an SPN we obtain a novel flexible prior over functions, which implicitly represents an exponentially large mixture of local GPs. Exact and efficient posterior inference in this model can be done in a natural interplay of the inference mechanisms in GPs and SPNs. Thereby, each GP is -- similarly as in a mixture of experts approach -- responsible only for a subset of data points, which effectively reduces inference cost in a divide and conquer fashion. We show that integrating GPs into the SPN framework leads to a promising probabilistic regression model which is: (1) computational and memory efficient, (2) allows efficient and exact posterior inference, (3) is flexible enough to mix different kernel functions, and (4) naturally accounts for non-stationarities in time series. In a variate of experiments, we show that the SPN-GP model can learn input dependent parameters and hyper-parameters and is on par with or outperforms the traditional GPs as well as state of the art approximations on real-world data
    corecore