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[1] We investigate the transient response of severe-
thunderstorm forcing to the time-varying greenhouse gas
concentrations associated with the A1B emissions scenario.
Using a five-member ensemble of global climate model
experiments, we find a positive trend in such forcing within
the United States, over the period 1950—2099. The rate of
increase varies by geographic region, depending on (i) low-
level water vapor availability and transport, and (ii) the
frequency of synoptic-scale cyclones during the warm season.
Our results indicate that deceleration of the greenhouse gas
emissions trajectory would likely result in slower increases
in severe thunderstorm forcing. Citation: Trapp, R. J., N. S.
Diffenbaugh, and A. Gluhovsky (2009), Transient response of severe
thunderstorm forcing to elevated greenhouse gas concentrations,
Geophys. Res. Lett., 36, 1L01703, doi:10.1029/2008 GL036203.

1. Introduction

[2] Deep convective storms are ubiquitous worldwide.
They represent a critical component in the hydrological
cycle, and also play essential roles in large-scale atmospheric
circulations by vertically mixing heat, water vapor, and
momentum over the depth of the troposphere.

[3] But thunderstorms and their byproducts are also a
natural hazard, as highlighted by the 1296 tornadoes that
have occurred in the United States during the first six
months of 2008 [NOAA, 2008]. This cumulative tornado
count exceeds the average number of tornadoes for the
entire year. Numerous instances of flash floods, lightning,
hail, and destructive surface winds have also been reported,
and underscore the significant threat to life and property that
the extreme or severe modes of thunderstorms pose.

[4] The extent to which anomalous years such as 2008
are a consequence of internal climate system variability or
of changes in external forcing of the climate system is
currently unknown. Possible sources of internal variability
include the El Niflo-Southern Oscillation, although correla-
tions between sea surface temperatures in the Pacific Ocean
and tornado activity in the United States have been shown
to be weak [Marzban and Schaefer, 2001]. Possible external
changes include enhanced radiative forcing associated with
human-induced increases in greenhouse gas (GHG) concen-
trations. Although the chaotic nature of the climate system
renders attempts to attribute individual episodes of severe
weather to anthropogenic effects tenuous at best, we can
explore the links between local phenomena such as severe,
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extratropical thunderstorms to global-scale radiative pro-
cesses. This is the motivation for our research.

[s] Herein we consider the transient response of severe,
extratropical thunderstorm forcing to time-increasing GHG
concentrations, thereby pursuing scale connections driven
by the long-term impact of anthropogenically enhanced
radiative processes. As demonstrated below, a key link in
this connection is low-level atmospheric water vapor. An
increase in water vapor is a consistent response to low-level
warming [e.g., Held and Soden, 2006], and both can lead to
enhanced buoyant energy for thunderstorm updrafts. Tem-
perature itself is another key link: A reduction in the
latitudinal temperature gradient implies a reduction in the
vertical gradient of wind, which in turn implies the possi-
bility of reduced thunderstorm organization and severity.
Intermediary to these links are regional-scale, extratropical
cyclones and attendant weather systems. The cyclones are in
part governed by—but also help regulate—the temperature
and humidity distributions. Hence, we turn to climate model
experiments to help us identify the dominant processes and
explore more deeply their implications for convective storm
forcing.

2. Methods

[6] In order to quantify the transient response of severe
thunderstorm forcing to transient changes in anthropogenic
GHGs, we generated a five-member ensemble of experi-
ments using the National Center for Atmospheric Research
(NCAR) Community Climate System Model (CCSM3)
[Collins et al., 2006]. Given the CCSM3 c, e, b.ESO1, £.ESOI,
and g.ESO1 ensemble members produced by NCAR as part
of the IPCC AR4 effort [Meehl et al., 2007], we re-ran the
atmospheric component of CCSM3 (CAM3), applying the
original CCSM3-generated SSTs as a prescribed boundary
condition, along with the same land cover and topography
(following Diffenbaugh et al. [2006]). These new simula-
tions provided the sub-daily, 3D atmospheric fields neces-
sary for the thunderstorm forcing analyses.

[7] We integrated the five CAM3 ensemble members
over the period 1948—-2099, applying the greenhouse gas
concentrations from the A1B emissions scenario (in which
the total CO, concentrations increase to almost 700 ppm by
end of the 21st century [Nakicenovié et al., 2000]), and
allowing the initial three years for model spin-up. Each of
the CAM3 simulations has 26 hybrid levels in the vertical
and uses 85-wavenumber triangular truncation (T85) in the
horizontal. Although this horizontal resolution is high for
the current generation of GCMs [Intergovernmental Panel
on Climate Change, 2007], it is obviously insufficient to
represent individual thunderstorms. We can, however, ex-
ploit the resolved distributions of temperature, moisture, and
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winds, which are well known to strongly influence the
organization of cumulus clouds into severe convective
storms [e.g., Klemp, 1987]. Validation of CCSM3 against
global reanalysis data provides further justification for this
general approach [Marsh et al., 2007].

[8] We quantified severe thunderstorm forcing through
an empirical parameter Npggy [Brooks et al., 2003; Trapp
et al., 2007a; Marsh et al., 2007], which represents the
number of days on which significant surface winds, hail,
and/or tornadoes could occur locally (in the vicinity of a
model grid point), contingent on initiation of thunderstorms.
This parameter was incremented on each model day (7), at
each horizontal model grid point (x, y), as follows:

Npsgy (x,,£) = 1, CAPE x S06 > 10000, (1a)

Npsgy (x,,1) = 0, CAPE x S06 < 10000 (1b)
where the deep-layer wind shear S06 is given as the mag-
nitude of the vector difference between the horizontal wind
at 6 km AGL (V) and the wind at the lowest model level
(Vy), and CAPE is convective available potential energy.
Prior to the application of equation (1), we required that:
CAPE > 100 J kg™, [Vs| > Vo], = 5m s~', and S06 >
5msh

[9] Anacknowledged limitation to the methodology based
on equation (1) is that it does not account for thunderstorm
initiation. We have attempted to at least partially address
this limitation through a new parameter Npggy,p. This is a
measure of severe thunderstorm forcing constrained by the
local occurrence of convective precipitation, and therefore by
the local activation of model-parameterized cumulus convec-
tion [see Collins et al., 2006]. Hence, Npggyp was incre-
mented on each model day, at each horizontal model grid
point, when equation (la) was satisfied and the convective
precipitation was nonzero.

[10] Time series of the forcing and other parameters were
constructed for each ensemble member from spatial averages
(denoted by ( )) over the following U.S. regions: southeast
(SE; 75-95°W, 25-37.5°N), northeast (NE; 67.5—-80°W,
37.5-47.5°N), Midwest (MW; 80-95°W, 37.5-50°N),
southern Great Plains (SGP; 95-105°W, 25-40°N), and
northern Great Plains (NGP; 95—-105°W, 40—50°N). These
regions were identified based on our previous research
[Trapp et al., 2007a], and considered particularly relevant
for the current problem.

[11] Estimation of trends with simultaneous confidence
bands was carried out following Wu and Zhao [2007] for
data observed from the model

)(t:/Lt+eta t:17"'7n7 (2)

where i, is the unknown trend (a regression function) and e,
is a mean 0 stationary process. Assuming the trend is smooth
(with subsequent testing of the residuals), it was computed
via local polynomial regression [Fan and Yao, 2003] with
the data-based global bandwidth selection [Ruppert et al.,
1995] and a bias correction. In future work, more complex
trends will be treated with local polynomial regression with
a local (dependent on ¢) bandwidth selection [Ruppert, 1997;
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Gluhovsky and Gluhovsky, 2007] or wavelet-based trend
assessment.

[12] The construction of confidence bands with asymp-
totically correct coverage probabilities in case of dependent
errors e, is a major recent advancement attained by reducing
equation (2) to the conventional model

X, =p+0Z, t=1,....n, (3)
where Z, are independent standard normal variables and o
is the (unknown) variance of e,, While with properly chosen
bandwidths, the asymptotic properties of .X; follow those
of X;, it has become clear that even slight departures from
normality may be detrimental for the inference based on
finite samples [Wilcox, 2003] and time series records of
limited length [Gluhovsky and Agee, 2007], which could be
remedied by employing increasingly popular bootstrap
methods. These were used in this paper for obtaining
reliable inference for correlations, but bootstrap methods for
estimating trends are still under development.

[13] Finally, we adopted the methodology of Finnis et al.
[2007] and employed an objective means to identify cyclones
in the CCSM3-simulated sea-level pressure fields. Monthly
cyclone counts were then stratified by U.S. region and sea-
son. We then considered the cyclone counts during 20th and
21st Century time slices of 1980—1999 and 2080-2099,
respectively. We computed the difference between the two
sample means X, normalized by the standard error for the
difference:

X21c — X20C
e 4)

Sic 1 Se

s

where 57 is the sample variance, and n = 20 x 12 months.
Absolute values of the test statistic z greater than 1.645 rep-
resent statistically significant differences at the 90% confi-
dence level.

3. Results

[14] We begin with an analysis of thunderstorm intensity,
a characterization that actually is rather ill defined. Although
there is no accepted thunderstorm intensity metric, the
updraft or vertical-wind speed within the storm is most often
used and hence adopted herein. Strong thunderstorm updrafts
are more likely to support the growth of large hailstones and
produce large rainfall rates, which can lead to more intense
downdrafts and associated outflow winds. Strong updrafts
also tend to have large vertical gradients in vertical wind
speed, which can stretch and amplify storm-scale rotation.
Upon making a number of assumptions, it can be shown that
Wmax = V2 X CAPE, where wp,,, is the theoretical maxi-
mum updraft speed [Holton, 2004]. Hence CAPE can serve
as an indirect proxy for intensity.

[15] Observational data show that CAPE > 2000 J kg™
occurs relatively infrequently (only a few days per year in
the United States), though more often in the Great Plains
[Brooks et al., 2003]. One could conclude by way of this
proxy that thunderstorms with high-end intensity are most
frequent in geographical locations where the days with
CAPE > 2000 J kg*l (CAPE;() is largest. Our CCSM3
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time series of regionally averaged CAPE,qy, allow us to
draw further conclusions about long-term future trends in
high-end thunderstorms. Over the interval 1950-2099,
slight increases in (CAPE,qqo) are indicated over the SE,
MW, and NE regions (Figure 1a). On the other hand, fairly
steep increases are indicated in the SGP and NGP regions.
Thus, our climate model analysis suggests an increasing
frequency of thunderstorms with strong updrafts over the
Great Plains of the United States, a geographical region
currently prone to such intense storms.

[16] An association between increases in convective
storm updraft speeds and enhanced atmospheric GHGs has
also been identified through a different means [Del Genio
et al., 2007]. Yet, an analysis of severe convective storm
forcing is incomplete without consideration of the vertical
shear of the environmental horizontal wind over the lower
half of the troposphere (S06). Indeed, deep cumulus convec-
tion in the presence of large wind shear is modified such that
subsequent organization, intensity, and longevity are enhanced
given sufficient CAPE [Weisman and Klemp, 1982]. Hence,
it is appropriate to combine both parameters into an empirical
variable such as Npggy-

[17] It has been demonstrated that Npggy may undergo
significant increases by the late 21st Century [Trapp et al.,
2007a]. Analysis of the temporal pathway to such elevated
thunderstorm forcing is now possible with our continuous
model integrations. Over each of the five regions consid-
ered, a positive trend in (Npgpy) is revealed in the time
series of a representative ensemble member as well as in the
ensemble mean (Figure 1b). Importantly, the long-term trend
in this variable is also smooth rather than abrupt. A weaker,
yet still statistically significant positive trend in the forc-
ing constrained by occurrence of convective-precipitation
(Npsgv.p) is also indicated for each of the regions (Figure Ic).
In the least, this suggests that the frequency of thunderstorm
initiation, or conversely of thunderstorm inhibition, does not
appear to undergo substantial change in response to elevated
greenhouse gas concentrations (see below).

[18] The severe-thunderstorm forcing increases in time
in spite of the decreases in vertical wind shear (Figure 1d),
and because of compensating increases in CAPE (Figure le).
Potential contributors to CAPE include the temperature lapse
rate in the middle troposphere, the boundary-layer temper-
ature, and the boundary-layer water vapor [e.g., Brooks
et al., 2003]. For the current experiments, these are listed
in increasing order of importance, with essentially no long-
term trend indicated in the temperature lapse rates over a
3-5 km AGL layer (not shown), and a statistically signif-
icant positive trend in specific humidity ¢ (Figure 1f).
Considerable linear correlation between changes in CAPE
and changes in ¢ (Table 1) reinforces this attribution. Such
low-level humidification in these extratropical regions owes
in part to in-situ evaporation, but also to remote evaporation
and subsequent transport (we note that atmospheric transport
in this and other GCMs can be sensitive to the numerical
formulation [e.g., Stenke et al., 2008; Rasch et al., 2006]).
In other words, the effects of anthropogenically enhanced
GHGs on convection are considerably nonlocal [7renberth,
1999].

[19] Indeed, much of the extratropical water-vapor (and
also heat) originates in the subtropics and is transported
poleward by synoptic-scale cyclones [Trenberth, 1999]. The
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thermodynamic and dynamic processes associated with
extratropical cyclones otherwise pre-condition the atmo-
sphere for deep convective clouds and subsequently help
initiate their formation. The release of latent heat due to the
clouds has an upscale effect that can then intensify cyclones.
Therefore, our projected increases in severe thunderstorm
forcing would at first glance appear to be at odds with
previous analyses projecting future decreases in cyclone
frequency [e.g., Finnis et al., 2007].

[20] Over the conterminous United States, our analysis
clearly shows a decrease in annual cyclone frequency
during the model integration period (Figure 2). However,
closer inspection of the monthly and seasonal counts shows
that most of this decrease occurs during winter and early
spring months. Statistically significant decreases in the
21st Century cyclone frequency are found in most ensemble
members during the months relatively less prone to midlat-
itude thunderstorm formation (NDJF, or “cool season’).
In contrast, statistically insignificant decreases and even
increases in cyclone frequency are generally found in the
ensemble members during the late spring and summer
months (AMJJ, or “warm season’’), which tend to be rela-
tively more prone to thunderstorm formation (Figure 2).
Although occurrence of a severe thunderstorm is not exclu-
sively linked to existence of a synoptic-scale cyclone, we do
note for example that in the SE (NGP) region, the little
change (decreases) in the warm-season cyclone frequency
corresponds well with the large (weak) trends in (Npggy)-
Hence, from the perspective of a time-varying regional
analysis, we can conclude that projected changes in severe
thunderstorm forcing are actually quite congruous with pro-
jected changes (or lack thereof) in synoptic-scale cyclone
frequency.

[21] A synthesis of our results and theory now provides
us with a relatively simple yet compelling way to connect
anthropogenically enhanced global-scale processes to changes
in hazardous convective-scale phenomena. A key link is low-
level atmospheric water vapor. Low-level warming from
radiative processes results in in-situ low-level humidifica-
tion [e.g., Held and Soden, 2006], given some supply of
moisture from a water body and/or vegetation. Humidifica-
tion also results from remote evaporation and subsequent
transport, which depends in part on extratropical cyclones
and their associated winds. Enhanced low-level water vapor
(and low-level warming) then adds to existing local static
instability of the atmosphere. A final consequence is locally
enhanced buoyant energy (or CAPE), which can be realized
as enhanced thunderstorm updrafts.

[22] The physical interactions do not terminate at this
scale, since latent heating can then intensify the synoptic-
scale cyclones, and thereby feed back into vapor transport
and thunderstorm initiation. Countering this diabatic effect
on cyclone intensification, however, is the reduction of
large-scale, low-level baroclinity, resulting from the latitu-
dinally varying radiative forcing, including surface albedo
feedbacks [e.g., Holland and Bitz, 2003; Geng and Sugi,
2003; Finnis et al., 2007]. Hence, the low-level temperature
itself constitutes another key link, albeit one that varies by
season and by geographical region. Indeed, the reduction in
baroclinity is associated with a reduction in vertical wind
shear, as mandated by the thermal wind equation. This im-
plies a locally reduced contribution to severe thunderstorm
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Figure 1. Time series of regionally averaged: (a) CAPE,qo, the number of days on which CAPE > 2000 J kg™ ',
(b) Npsgv, the number of days on which severe convective storms and associated significant surface winds, hail, and/or
tornadoes could occur in the vicinity of a grid point, (¢) Npgsgy,p, the number of days with the joint occurrence of severe
convective storm forcing and convective precipitation at a grid point, (d) S06, the magnitude of the vector difference
between the horizontal wind at 6 km AGL and the wind at the lowest model level (m s~ "), (¢) CAPE (J kg™ "), and (f) ¢, the
surface specific humidity (x 107> kg kg™ "), for the SE, NE, MW, SGP, and NGP regions of the United States (see text). The
bold blue line represents the trend, and the dashed blue lines give the 90% confidence bands. The red line is a local
polynomial fit to the data, using a 12-month bandwidth. These time-series data originated from the ensemble member “b”.
The bold green line indicates the ensemble mean time series, analyzed using the same global bandwidth as that applied to
the individual member. Note that since the time-series values are regional averages, and the time series are also filtered, the

values are considerably less than what would be expected from raw data in smaller sub-areas within the regions.
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Table 1. Linear Correlations Between Changes in CAPE and Changes in Surface Specific Humidity (¢)*

Region Member-b Member-c Member-e Member-f Member-g
SE 0.62 (.49, .72) 0.53 (.43, .62) 0.35 (.19, .50) 0.80 (.66, .80) 0.78 (.72, .84)
NE 0.70 (.59, .79) 0.51 (.34, .65) 0.05 (—.13, .24) 0.79 (.70, .87) 0.81 (.70, .91)
MW 0.90 (.86, .93) 0.81 (.76, .86) 0.34 (.21, .46) 0.73 (.73, .85) 0.89 (.85, .92)
SGP 0.77 (.68, .85) 0.37 (.10, .66) 0.51 (.29, .69) 0.69 (.53, .81) 0.49 (.26, .70)
NGP 0.50 (.27, .68) 0.55 (.39, .71) 0.38 (.09, .61) 0.60 (.40, .75) 0.80 (.71, .87)

Changes are based on mean 21C (2079-2098) minus mean 20C (1979—1998) values. The 90% bootstrap confidence
intervals are given in parentheses.

forcing from wind shear [see Trapp et al., 2007a], the increasing trend in CAPE, which is sufficient to overcome
potential for less storm organization, and a potential de- the decreases in shear.

crease in severe thunderstorm forcing as GHG concentra-

tions increase. However, our modeli'ng resul'ts show that the 4 Summary and Conclusions

net severe thunderstorm forcing continues to increase through

the late 21st Century even with time-decreasing shear. This [23] Our study shows that the frequency of severe-
persistent increasing trend in Npgpy is caused by the persistent ~ thunderstorm forcing increases in time in response to the
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Figure 2. Ensemble mean time series of annual cyclone frequency over the conterminous United States, and differences,
for each ensemble member (b, c, ¢, f, g) between the mean 21C (2080—2099) and 20C (1980—1999) cyclone frequency
normalized by the standard error for the difference, during the AMJJ (red) and NDJF (blue) seasons: conterminous United
States, and the SE and NGP regions.
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A1B scenario of GHG emissions. This is also true for
severe-thunderstorm forcing that is constrained by the
occurrence of convective precipitation. The rate of increase
varies with geographical region and inherently depends on
(1) low-level water vapor availability and transport, and
(i1) the frequency of midlatitude synoptic-scale cyclones
during the warm season. The current report provides further
evidence of the effect of anthropogenic GHG emissions on
long-term trends in thunderstorm forcing [Trapp et al.,
2007a; Del Genio et al., 2007]. Further, it is suggested that
deceleration of the trajectory of GHG emissions could help
reduce increases in severe convective weather in the coming
decades.

[24] A consideration of other meteorological factors, and
other approaches [Trapp et al., 2007b], will be necessary to
refine these conclusions for specific hazardous phenomena
such as tornadoes. Furthermore, resolution of questions
raised about individual anomalous years in storm occurrence
awaits advanced statistical and high-resolution dynamical
modeling.

[25] Acknowledgments. The authors acknowledge the helpful com-
ments made by the two reviewers. This work stems from the Climate and
Extreme Weather initiatives within the Department of Atmospheric Scien-
ces at Purdue University and the Purdue Climate Change Research Center,
and was supported in part by NSF ATM-0541491. This is PCCRC paper
0830.
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