1 research outputs found

    Muscle mass maintenance and aging : role of Cavβ1

    No full text
    L’atrophie du muscle squelettique résulte d’une dégradation protéique importante qui entraîne à terme une perte de la masse et de la fonction musculaire. Cependant, le muscle est capable de mettre en place une réponse moléculaire qui tend à limiter la perte de la masse musculaire. Ces mécanismes sont aujourd’hui très peu décrits et les facteurs mis en jeu demeurent encore mal connus. Un des composants de cette réponse compensatoire a tout de même été identifié chez la souris. Il s’agit du facteur GDF5 (Growth Differentiation Factor 5), un membre de la famille des BMPs (Bone Morphogenetic Proteins) qui joue un rôle déterminant dans le maintien musculaire à la suite d’une dénervation. Néanmoins, la molécule qui initie et déclenche cette réponse reste à ce jour inconnue. Nous avons émis l’hypothèse que cette molécule pourrait être une protéine musculaire sensible à l’activité électrique. Nous nous sommes donc focalisés sur la protéine Cavβ1, qui est impliquée dans le couplage excitation-contraction et qui joue un rôle crucial dans l’activité « senseur de l’activité électrique » du DHPR, un canal calcique dépendant du voltage. Notre étude a révélé l'existence d'une nouvelle isoforme embryonnaire de Cavβ1 (Cavβ1-E) dans le muscle adulte dont l’expression augmente après la dénervation. Cavβ1-E limite l'atrophie musculaire en déclenchant l’activation génique du GDF5 dans le muscle dénervé. Puisque Cavβ1-E joue un rôle clé dans le maintien de la masse musculaire, nous nous sommes intéressés à cette protéine dans un contexte de perte de la masse musculaire liée au vieillissement. Nous avons mis en évidence une diminution de l’expression de Cavβ1-E dans le muscle âgé ainsi qu’une altération de l’axe Cavβ1-E/GDF5 en réponse à la dénervation. Ces données suggèrent que ces deux protéines sont essentielles dans le maintien de la masse musculaire au cours du vieillissement. En effet, nos expériences montrent que la surexpression de Cavβ1-E ou de GDF5 dans le muscle âgé permet de contrecarrer la perte musculaire. Nous avons également découvert l’homologue humain de Cavβ1-E (hCavβ1-E) et nos données mettent en évidence une corrélation positive entre l'expression de hCavβ1-E dans le muscle humain et la masse musculaire des sujets. Ces résultats suggèrent que des stratégies thérapeutiques visant à augmenter l’expression de Cavβ1-E ou de GDF5 dans le muscle âgé pourraient être envisagées pour lutter contre la perte de masse musculaire liée à l’âge.Skeletal muscle atrophy caused by disuse, nerve damage or other diseases are characterized by an increased protein breakdown leading to the progressive loss of muscle mass and function. However, it has been shown that skeletal muscle is able to activate a compensatory response in order to limit excessive muscle wasting. These compensatory mechanisms are still poorly described and the factors involved are not fully understood. To date, an important component of the compensatory response has been identified in mice : GDF5 (Growth Differenciation Factor 5), a member of the BMP (Bone Morphogenetic Protein) family, playing a critical role in muscle maintenance after a nerve damage. However, the first trigger of this molecular response remains unknown. We have hypothesized that this player could be a protein sensitive to electrical activity in skeletal muscle. We therefore focused our study on Cavβ1 protein, a regulatory subunit of the DHPR, a calcium channel described as essential in excitationcontraction coupling in skeletal muscle. Our study revealed the existence of a novel embryonic isoform of Cavβ1 (Cavβ1-E) in adult skeletal muscle, which expression increases after denervation. We discovered that Cavβ1-E stimulates GDF5 gene expression in skeletal muscle to counteract atrophy induced by nerve damage. Since we demonstrated that Cavβ1-E plays a key role in muscle maintenance, we studied its function during age-related muscle wasting. We observed that aged mouse muscle expresses lower quantity of Cavβ1-E and displays an altered Cavβ1-E/GDF5-dependent response to denervation compared to young muscle. These evidences suggested the involvement of this axis in skeletal muscle mass and function decline during ageing. Indeed, we found that overexpression of Cavβ1-E or GDF5 counteracts muscle mass loss and prevents the decrease of force generation in aged muscles. We also identified the human analogous of Cavβ1-E (hCavβ1-E) and our data showed a positive correlation between hCavβ1-E expression in human muscle and subject’s lean mass. These results suggest that strategies targeting Cavβ1-E or GDF5 could contribute to prevent agerelated skeletal muscle wasting
    corecore