29 research outputs found

    Oviduct-specific expression of tissue plasminogen activator in laying hens

    Get PDF
    Egg-laying hens are important candidate bioreactors for pharmaceutical protein production because of the amenability of their eggs for protein expression. In this study, we constructed an oviduct-specific vector containing tissue plasminogen activator (tPA) protein and green fluorescent protein (pL-2.8OVtPAGFP) and assessed its expression in vitro and in vivo. Oviduct epithelial and 3T3 cells were cultured and transfected with pL-2.8OVtPAGFP and pEGP-N1 (control vector), respectively. The pL-2.8OVtPAGFP vector was administered to laying hens via a wing vein and their eggs and tissues were examined for tPA expression. The oviduct-specific vector pL-2.8OVtPAGFP was expressed only in oviduct epithelial cells whereas pEGP-N1 was detected in oviduct epithelial and 3T3 cells. Western blotting detected a 89 kDa band corresponding to tPA in egg white and oviduct epithelial cells, thus confirming expression of the protein. The amount of tPAGFP in eggs ranged 9 to 41 ng/mL on the third day after vector injection. The tPA expressed in egg white and oviduct epithelial cells showed fibrinolytic activity, indicating that the protein was expressed in active form. GFP was observed only in oviducts, with no detection in heart, muscle, liver and intestine. This is the first study to report the expression of tPA in egg white and oviduct epithelial cells using an oviduct-specific vector

    The SmartTarget Biopsy Trial: A Prospective, Within-person Randomised, Blinded Trial Comparing the Accuracy of Visual-registration and Magnetic Resonance Imaging/Ultrasound Image-fusion Targeted Biopsies for Prostate Cancer Risk Stratification

    Get PDF
    Background: Multiparametric magnetic resonance imaging (mpMRI)-targeted prostate biopsies can improve detection of clinically significant prostate cancer and decrease the overdetection of insignificant cancers. It is unknown whether visual-registration targeting is sufficient or augmentation with image-fusion software is needed. Objective: To assess concordance between the two methods. Design, setting, and participants: We conducted a blinded, within-person randomised, paired validating clinical trial. From 2014 to 2016, 141 men who had undergone a prior (positive or negative) transrectal ultrasound biopsy and had a discrete lesion on mpMRI (score 3–5) requiring targeted transperineal biopsy were enrolled at a UK academic hospital; 129 underwent both biopsy strategies and completed the study. Intervention: The order of performing biopsies using visual registration and a computer-assisted MRI/ultrasound image-fusion system (SmartTarget) on each patient was randomised. The equipment was reset between biopsy strategies to mitigate incorporation bias. Outcome measurements and statistical analysis: The proportion of clinically significant prostate cancer (primary outcome: Gleason pattern ≥3 + 4 = 7, maximum cancer core length ≥4 mm; secondary outcome: Gleason pattern ≥4 + 3 = 7, maximum cancer core length ≥6 mm) detected by each method was compared using McNemar's test of paired proportions. Results and limitations: The two strategies combined detected 93 clinically significant prostate cancers (72% of the cohort). Each strategy detected 80/93 (86%) of these cancers; each strategy identified 13 cases missed by the other. Three patients experienced adverse events related to biopsy (urinary retention, urinary tract infection, nausea, and vomiting). No difference in urinary symptoms, erectile function, or quality of life between baseline and follow-up (median 10.5 wk) was observed. The key limitations were lack of parallel-group randomisation and a limit on the number of targeted cores. Conclusions: Visual-registration and image-fusion targeting strategies combined had the highest detection rate for clinically significant cancers. Targeted prostate biopsy should be performed using both strategies together. Patient summary: We compared two prostate cancer biopsy strategies: visual registration and image fusion. A combination of the two strategies found the most clinically important cancers and should be used together whenever targeted biopsy is being performed. Image-fusion results in a clinically significant prostate cancer detection rate were similar to those of visual registration performed by an experienced operator. Detection could be improved by 14% with no adverse effect on patient safety by adding image fusion to conventional visual-registration targeting

    A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureus Enterotoxin B

    Get PDF
    The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APTSEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide

    Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions

    Get PDF
    Background Bile duct injury (BDI) is a dreaded complication of cholecystectomy, often caused by misinterpretation of biliary anatomy. To prevent BDI, techniques have been developed for intraoperative assessment of bile duct anatomy. This article reviews the evidence for the different techniques and discusses their strengths and weaknesses in terms of efficacy, ease, and cost-effectiveness. Method PubMed was searched from January 1980 through December 2009 for articles concerning bile duct visualization techniques for prevention of BDI during laparoscopic cholecystectomy. Results Nine techniques were identified. The critical-view-of-safety approach, indirectly establishing biliary anatomy, is accepted by most guidelines and commentaries as the surgical technique of choice to minimize BDI risk. Intraoperative cholangiography is associated with lower BDI risk (OR 0.67, CI 0.61-0.75). However, it incurs extra costs, prolongs the operative procedure, and may be experienced as cumbersome. An established reliable alternative is laparoscopic ultrasound, but its longer learning curve limits widespread implementation. Easier to perform are cholecystocholangiography and dye cholangiography, but these yield poor-quality images. Light cholangiography, requiring retrograde insertion of an optical fiber into the common bile duct, is too unwieldy for routine use. Experimental techniques are passive infrared cholangiography, hyperspectral cholangiography, and near-infrared fluorescence cholangiography. The latter two are performed noninvasively and provide real-time images. Quantitative data in patients are necessary to further evaluate these techniques. Conclusions The critical-view-of-safety approach should be used during laparoscopic cholecystectomy. Intraoperative cholangiography or laparoscopic ultrasound is recommended to be performed routinely. Hyperspectral cholangiography and near-infrared fluorescence cholangiography are promising novel techniques to prevent BDI and thus increase patient safety

    Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1.

    No full text
    Superantigens stimulate T cells bearing particular T-cell receptor V beta sequences, so they are extremely potent polyclonal T-cell mitogens. T-cell activation is preceded by binding of superantigens to class II major histocompatibility complex (MHC) molecules. To further the structural characterization of these interactions, the crystal structure of a toxin associated with toxic-shock syndrome, TSST-1, which is a microbial superantigen, has been determined at 2.5 A resolution. The N- and C-terminal domains of the structure both contain regions involved in MHC class II association; the C-terminal domain is also implicated in binding the T-cell receptor. Despite low sequence conservation, the TSST-1 topology is similar to the structure reported for the superantigen staphylococcal enterotoxin B4. But TSST-1 lacks several of the structural features highlighted as central to superantigen activity in the staphylococcal enterotoxin B and we therefore reappraise the structural basis of superantigen action
    corecore