482 research outputs found

    Damage to the Ventromedial Prefrontal Cortex Impairs Learning from Observed Outcomes

    Get PDF
    Individuals learn both from the outcomes of their own internally generated actions ("experiential learning") and from the observation of the consequences of externally generated actions ("observational learning"). While neuroscience research has focused principally on the neural mechanisms by which brain structures such as the ventromedial prefrontal cortex (vmPFC) support experiential learning, relatively less is known regarding how learning proceeds through passive observation. We explored the necessity of the vmPFC for observational learning by testing a group of patients with damage to the vmPFC as well as demographically matched normal comparison and brain-damaged comparison groups-and a single patient with bilateral dorsal prefrontal damage-using several value-learning tasks that required learning from direct experience, observational learning, or both. We found a specific impairment in observational learning in patients with vmPFC damage manifest in the reduced influence of previously observed rewards on current choices, despite a relatively intact capacity for experiential learning. The current study provides evidence that the vmPFC plays a critical role in observational learning, suggests that there are dissociable neural circuits for experiential and observational learning, and offers an important new extension of how the vmPFC contributes to learning and memory

    Anterior Prefrontal Cortex Contributes to Action Selection through Tracking of Recent Reward Trends

    Get PDF
    The functions of prefrontal cortex remain enigmatic, especially for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task switching, and memory. A predominant current theory regarding the most anterior sector, the frontopolar cortex (FPC), is that it is involved in exploring alternative courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method, together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a four-armed bandit task known from neuroimaging studies to activate the FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments

    Child labor

    Get PDF

    Overtime pay

    Get PDF

    Right inferior frontal gyrus damage is associated with impaired initiation of inhibitory control, but not its implementation

    Get PDF
    Inhibitory control is one of the most important control functions in the human brain. Much of our understanding of its neural basis comes from seminal work showing that lesions to the right inferior frontal gyrus (rIFG) increase stop-signal reaction time (SSRT), a latent variable that expresses the speed of inhibitory control. However, recent work has identified substantial limitations of the SSRT method. Notably, SSRT is confounded by trigger failures: stop-signal trials in which inhibitory control was never initiated. Such trials inflate SSRT, but are typically indicative of attentional, rather than inhibitory deficits. Here, we used hierarchical Bayesian modeling to identify stop-signal trigger failures in human rIFG lesion patients, non-rIFG lesion patients, and healthy comparisons. Furthermore, we measured scalp-EEG to detect β-bursts, a neurophysiological index of inhibitory control. rIFG lesion patients showed a more than fivefold increase in trigger failure trials and did not exhibit the typical increase of stop-related frontal β-bursts. However, on trials in which such β-bursts did occur, rIFG patients showed the typical subsequent upregulation of β over sensorimotor areas, indicating that their ability to implement inhibitory control, once triggered, remains intact. These findings suggest that the role of rIFG in inhibitory control has to be fundamentally reinterpreted

    Counseling Concepts Applied to the Process of Education

    Get PDF

    Distributed neural system for general intelligence revealed by lesion mapping

    Get PDF
    General intelligence (g) captures the performance variance shared across cognitive tasks and correlates with real-world success. Yet it remains debated whether g reflects the combined performance of brain systems involved in these tasks or draws on specialized systems mediating their interactions. Here we investigated the neural substrates of g in 241 patients with focal brain damage using voxel-based lesion–symptom mapping. A hierarchical factor analysis across multiple cognitive tasks was used to derive a robust measure of g. Statistically significant associations were found between g and damage to a remarkably circumscribed albeit distributed network in frontal and parietal cortex, critically including white matter association tracts and frontopolar cortex. We suggest that general intelligence draws on connections between regions that integrate verbal, visuospatial, working memory, and executive processes

    A role for left temporal pole in the retrieval of words for unique entities

    Get PDF
    r r Abstract: Both lesion and functional imaging studies have implicated sectors of high-order association cortices of the left temporal lobe in the retrieval of words for objects belonging to varied conceptual categories. In particular, the cortices located in the left temporal pole have been associated with naming unique persons from faces. Because this neuroanatomical-behavioral association might be related to either the specificity of the task (retrieving a name at unique level) or to the possible preferential processing of faces by anterior temporal cortices, we performed a PET imaging experiment to test the hypothesis that the effect is related to the specificity of the word retrieval task. Normal subjects were asked to name at unique level entities from two conceptual categories: famous landmarks and famous faces. In support of the hypothesis, naming entities in both categories was associated with increases in activity in the left temporal pole. No main effect of category (faces vs. landmarks/buildings) or interaction of task and category was found in the left temporal pole. Retrieving names for unique persons and for names for unique landmarks activate the same brain region. These findings are consistent with the notion that activity in the left temporal pole is linked to the level of specificity of word retrieval rather than the conceptual class to which the stimulus belongs. Hum. Brain Mapping 13:199–212, 2001. © 2001 Wiley-Liss, Inc. Key words: left temporal pole; language; word retrieval; functional imaging; face processing; naming r

    Dissociations of Face and Object Recognition in Developmental Prosopagnosia

    Get PDF
    Neuropsychological studies with patients suffering from prosopagnosia have provided the main evidence for the hypothesis that the recognition of faces and objects rely on distinct mechanisms. Yet doubts remain, and it has been argued that no case demonstrating an unequivocal dissociation between face and object recognition exists due in part to the lack of appropriate response time measurements (Gauthier et al., 1999). We tested seven developmental prosopagnosics to measure their accuracy and reaction times with multiple tests of face recognition and compared this with a larger battery of object recognition tests. For our systematic comparison, we used an old/new recognition memory paradigm involving memory tests for cars, tools, guns, horses, natural scenes, and houses in addition to two separate tests for faces. Developmental prosopagnosic subjects performed very poorly with the face memory tests as expected. Four of the seven prosopagnosics showed a very strong dissociation between the face and object tests. Systematic comparison of reaction time measurements for all tests indicates that the dissociations cannot be accounted for by differences in reaction times. Contrary to an account based on speed accuracy tradeoffs, prosopagnosics were systematically faster in nonface tests than in face tests. Thus, our findings demonstrate that face and nonface recognition can dissociate over a wide range of testing conditions. This is further support for the hypothesis that face and nonface recognition relies on separate mechanisms and that developmental prosopagnosia constitutes a disorder separate from developmental agnosia
    • …
    corecore