18,939 research outputs found
Recommended from our members
The Recurrent Temporal Discriminative Restricted Boltzmann Machines
Classification of sequence data is the topic of interest for dynamic Bayesian models and Recurrent Neural Networks (RNNs). While the former can explicitly model the temporal dependencies between class variables, the latter have a capability of learning representations. Several attempts have been made to improve performance by combining these two approaches or increasing the processing capability of the hidden units in RNNs. This often results in complex models with a large number of learning parameters. In this paper, a compact model is proposed which offers both representation learning and temporal inference of class variables by rolling Restricted Boltzmann Machines (RBMs) and class variables over time. We address the key issue of intractability in this variant of RBMs by optimising a conditional distribution, instead of a joint distribution. Experiments reported in the paper on melody modelling and optical character recognition show that the proposed model can outperform the state-of-the-art. Also, the experimental results on optical character recognition, part-of-speech tagging and text chunking demonstrate that our model is comparable to recurrent neural networks with complex memory gates while requiring far fewer parameters
qPCR multiplex detection of microRNA and messenger RNA in a single reaction.
Reverse Transcription-Quantitative PCR (RT-qPCR) is one of the standards for analytical measurement of different RNA species in biological models. However, current Reverse Transcription (RT) based priming strategies are unable to synthesize differing RNAs and ncRNAs especially miRNAs, within a single tube. We present a new methodology, referred to as RNAmp, that measures in parallel miRNA and mRNA expression. We demonstrate this in various cell lines, then evaluate clinical utility by quantifying several miRNAs and mRNA simultaneously in sera. PCR efficiency in RNAmp was estimated between 1.8 and 1.9 which is comparable to standard miRNA and random primer RT approaches. Furthermore, when using RNAmp to detect selected mRNA and miRNAs, the quantification cycle (Cq) was several cycles lower. This low volume single-tube duplex protocol reduces technical variation and reagent usage and is suitable for uniform analysis of single or multiple miRNAs and/or mRNAs within a single qPCR reaction
Adaptive Feature Ranking for Unsupervised Transfer Learning
Transfer Learning is concerned with the application of knowledge gained from solving a problem to a different but related problem domain. In this paper, we propose a method and efficient algorithm for ranking and selecting representations from a Restricted Boltzmann Machine trained on a source domain to be transferred onto a target domain. Experiments carried out using the MNIST, ICDAR and TiCC image datasets show that the proposed adaptive feature ranking and transfer learning method offers statistically significant improvements on the training of RBMs. Our method is general in that the knowledge chosen by the ranking function does not depend on its relation to any specific target domain, and it works with unsupervised learning and knowledge-based transfer
Recommended from our members
Sequence Classification Restricted Boltzmann Machines With Gated Units
For the classification of sequential data, dynamic Bayesian networks and recurrent neural networks (RNNs) are the preferred models. While the former can explicitly model the temporal dependences between the variables, and the latter have the capability of learning representations. The recurrent temporal restricted Boltzmann machine (RTRBM) is a model that combines these two features. However, learning and inference in RTRBMs can be difficult because of the exponential nature of its gradient computations when maximizing log likelihoods. In this article, first, we address this intractability by optimizing a conditional rather than a joint probability distribution when performing sequence classification. This results in the ``sequence classification restricted Boltzmann machine'' (SCRBM). Second, we introduce gated SCRBMs (gSCRBMs), which use an information processing gate, as an integration of SCRBMs with long short-term memory (LSTM) models. In the experiments reported in this article, we evaluate the proposed models on optical character recognition, chunking, and multiresident activity recognition in smart homes. The experimental results show that gSCRBMs achieve the performance comparable to that of the state of the art in all three tasks. gSCRBMs require far fewer parameters in comparison with other recurrent networks with memory gates, in particular, LSTMs and gated recurrent units (GRUs)
- …