3 research outputs found

    Post-translational regulation of metabolism in fumarate hydratase deficient cancer cells.

    Get PDF
    Deregulated signal transduction and energy metabolism are hallmarks of cancer and both play a fundamental role in tumorigenesis. While it is increasingly recognised that signalling and metabolism are highly interconnected, the underpinning mechanisms of their co-regulation are still largely unknown. Here we designed and acquired proteomics, phosphoproteomics, and metabolomics experiments in fumarate hydratase (FH) deficient cells and developed a computational modelling approach to identify putative regulatory phosphorylation-sites of metabolic enzymes. We identified previously reported functionally relevant phosphosites and potentially novel regulatory residues in enzymes of the central carbon metabolism. In particular, we showed that pyruvate dehydrogenase (PDHA1) enzymatic activity is inhibited by increased phosphorylation in FH-deficient cells, restricting carbon entry from glucose to the tricarboxylic acid cycle. Moreover, we confirmed PDHA1 phosphorylation in human FH-deficient tumours. Our work provides a novel approach to investigate how post-translational modifications of enzymes regulate metabolism and could have important implications for understanding the metabolic transformation of FH-deficient cancers with potential clinical applications

    The role of HIF in VHL defective tumours

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    HIRA loss transforms FH-deficient cells.

    Get PDF
    Fumarate hydratase (FH) is a mitochondrial enzyme that catalyzes the reversible hydration of fumarate to malate in the tricarboxylic acid (TCA) cycle. Germline mutations of FH lead to hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a cancer syndrome characterized by a highly aggressive form of renal cancer. Although HLRCC tumors metastasize rapidly, FH-deficient mice develop premalignant cysts in the kidneys, rather than carcinomas. How Fh1-deficient cells overcome these tumor-suppressive events during transformation is unknown. Here, we perform a genome-wide CRISPR-Cas9 screen to identify genes that, when ablated, enhance the proliferation of Fh1-deficient cells. We found that the depletion of the histone cell cycle regulator (HIRA) enhances proliferation and invasion of Fh1-deficient cells in vitro and in vivo. Mechanistically, Hira loss activates MYC and its target genes, increasing nucleotide metabolism specifically in Fh1-deficient cells, independent of its histone chaperone activity. These results are instrumental for understanding mechanisms of tumorigenesis in HLRCC and the development of targeted treatments for patients
    corecore