8 research outputs found

    MODIFICATION OF GRAPHENE OXIDE BY CURCUMIN AND APPLICATION IN POLYURETHANE COATING

    Get PDF
    Curcumin modified graphene oxide (GO-CR) was prepared using adsorption method and polyurethane (PU) coating containing 0.3 wt% GO-CR was prepared on carbon steel. Synthesized GO-CR was characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and zeta potential measurement. Corrosion protection property of polyurethane coating containing GO-CR was evaluated and compared with blank polyurethane coating and coating containing GO by electrochemical impedance spectroscopy. The results showed that GO-CR has layer structure like GO with lower crystallinity. In GO-CR structure curcumin was attached on GO surface. The presence of curcumin on GO-CR surface provided corrosion inhibition action for PU coating and also improved the dispersion of GO in PU coating

    Preparation of Magnetic Composite Polyaniline/Fe3O4−Hydrotalcite and Performance in Removal of Methyl Orange

    No full text
    Magnetic composite fabricated from polyaniline and Fe3O4-hydrotalcite (Pan/MHT) was successfully applicated for removal of methyl orange (MO) from wastewater. The structure and properties of Pan/MHT were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer, and Brunauer-Emmett-Teller adsorption isotherm. Adsorption kinetic results indicated that the adsorption process followed pseudosecond-order kinetic model (R2=0.999), MO adsorption onto Pan/MHT was well described by Freundlich isotherm (R2=0.994), and the MO adsorption capacity of 2 Pan/MHT obtained the highest with Qe=156.25 mg/g. Batch adsorption experiments were carried out using magnetic composite with the effects of initial MO concentration, solution pH, and adsorbent dosage. The results revealed that the magnetic Pan/MHT exhibited efficient adsorption of MO in the aqueous solution as a result of the affinity for organic dyes, microporous structure, and suitable surface area for adsorption (15,460 m2/g). The superparamagnetic behavior of Pan/MHT (withHc=18.56 Oe, Ms=23.38×10−3 emu/g, andMr=0.91×10−3 emu/g) helps that it could be separated from the solution and performs as an economical and alternative adsorbent to removal and degrade azo dye from wastewater. Pan/MHT was also investigated to reuse after desorption of MO in 0.1 M HCl, and the results show that 2 Pan/MHT can be reused for 4 cycles with Qe=79.66 mg/g

    Multimodal analysis of methylomics and fragmentomics in plasma cell-free DNA for multi-cancer early detection and localization

    No full text
    Despite their promise, circulating tumor DNA (ctDNA)-based assays for multi-cancer early detection face challenges in test performance, due mostly to the limited abundance of ctDNA and its inherent variability. To address these challenges, published assays to date demanded a very high-depth sequencing, resulting in an elevated price of test. Herein, we developed a multimodal assay called SPOT-MAS (screening for the presence of tumor by methylation and size) to simultaneously profile methylomics, fragmentomics, copy number, and end motifs in a single workflow using targeted and shallow genome-wide sequencing (~0.55×) of cell-free DNA. We applied SPOT-MAS to 738 non-metastatic patients with breast, colorectal, gastric, lung, and liver cancer, and 1550 healthy controls. We then employed machine learning to extract multiple cancer and tissue-specific signatures for detecting and locating cancer. SPOT-MAS successfully detected the five cancer types with a sensitivity of 72.4% at 97.0% specificity. The sensitivities for detecting early-stage cancers were 73.9% and 62.3% for stages I and II, respectively, increasing to 88.3% for non-metastatic stage IIIA. For tumor-of-origin, our assay achieved an accuracy of 0.7. Our study demonstrates comparable performance to other ctDNA-based assays while requiring significantly lower sequencing depth, making it economically feasible for population-wide screening

    Malignant Melanoma

    No full text

    Cutaneous Melanoma

    No full text
    corecore