34 research outputs found

    Textures, water content and degassing of silicic andesites from recent plinian and dome-forming eruptions at Mount Pelee volcano (Martinique, Lesser Antilles arc

    No full text
    Previous petrological and phase-equilibrium experimental studies on recent silicic andesites from Mount Pelée volcano have evidenced comparable pre-eruptive conditions for plinian and dome-forming (pelean herein) eruptions, implying that differences in eruptive style must be primarily controlled by differences in degassing behaviour of the Mount Pelée magmas during eruption. To further investigate the degassing conditions of plinian and pelean magmas of Mount Pelée, we study here the most recent Mount Pelée's products (P1 at 650 years B.P., 1902, and 1929 eruptions, which cover a range of plinian and pelean lithologies) for bulk-rock vesicularities, glass water contents (glass inclusions in phenocrysts and matrix glasses) and microtextures. Water contents of glass inclusions are scattered in the plinian pumices but on average compare with the experimentally-deduced pre-eruptive melt water content (i.e., 5.3– 6.3 wt.%), whereas they are much lower in the dominant pelean lithologies (crystalline, poorly vesicular lithics and dome samples). This indicates that the glass inclusions of the pelean products have undergone strong leakage and do not represent pre-eruptive water contents. The water content of the pyroclast matrix glasses are thought to closely represent th

    Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France)

    No full text
    International audienceAttributes of several thousand fractures were collected in three boreholes of 2.2, 3.6, and 3.8 km depth, penetrating the Soultz Hot Dry Rock reservoir (France). The fractures were sampled from cores and from several high-resolution imaging techniques such as borehole televiewer (BHTV), ultrasonic borehole imager (UBI), formation microscanner (FMS), formation microimager (FMI), and azimuthal resistivity imaging (ARI). A comparison was made between the data collected on cores and those provided by different imaging techniques. The comparison clearly establishes that the different wall-images are not as exhaustive as the core data and cannot provide a complete characterization of the fracture network. Discrete fractures thinner than 1 mm are not properly detected. This is also the case for discrete fractures closer than 5 mm, which appear only as single traces. The imaging techniques are, nevertheless, very powerful for characterizing altered fracture clusters. Whatever the technique used, the fracture strikes were correctly sampled with the different systems. This comparison allowed us to calibrate the fracture population data obtained from the imaging system in order to correct for the filtering effect introduced by the technique itself and by the alteration of the rock mass

    Les risques volcaniques dans les petites Antilles francaises

    No full text
    SIGLEAvailable at INIST (FR), Document Supply Service, under shelf-number : RP 185 (3796) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore