39 research outputs found

    Influence of wing span on the aerodynamics of wings in ground effect

    Get PDF
    A computational fluid dynamics study of the influence of wing span has been conducted for an inverted wing with endplates in ground effect. Aerodynamic coefficients were determined for different spans at different ground clearances, highlighting a trend for shorter spans to delay the onset of both separation and resulting loss of negative lift. The vortices at the wing endplates were not observed to change significantly in terms of strength and size; thus, at shorter spans, their influence over a larger percentage of the wing helped the flow stay attached and reduced the severity of the adverse pressure gradient which invokes separation at greater spans. Consequently, it was shown that, compared to a large-span wing, a wing with a shorter span may have a lower lift coefficient but can operate closer to the ground before performance is adversely affected

    Implications of compressibility effects for Reynolds-scaled testing of an inverted wing in ground effect

    Get PDF
    The influence of compressibility around an isolated inverted wing at a fixed Reynolds number was examined as relevant to the issue of wind tunnel scaling effects. Three-dimensional simulations were conducted for low ground clearances, at: full scale and a Mach number of 0.088, at 50% scale at Mach 0.176, and at 25% scale at Mach 0.352. As the scale was reduced, the increasing peak local Mach number between the wing and the ground resulted in a higher propensity of the flow to separate towards the trailing edge, and for incompressible or full-scale CFD to underestimate the lift and drag coefficients by an ever-increasing margin. The lower vortex path was less affected. The results suggest that compressible CFD of a scale experiment ought to be conducted at the same Reynolds number and Mach number as the tunnel test for the best possible correlation at free-stream Mach numbers beyond 0.15

    Techniques for aerodynamic analysis of cornering vehicles

    Get PDF
    When a vehicle travels through a corner it can experience a significant change in aerodynamic performance due to the curved path of its motion. The yaw angle of the flow will vary along its length and the relative velocity of the flow will increase with distance from the central axis of its rotation. Aerodynamic analysis of vehicles in the cornering condition is an important design parameter, particularly in motorsport. Most racing-cars are designed to produce downforce that will compromise straight-line speed to allow large gains to be made in the corners. Despite the cornering condition being important, aerodynamicists are restricted in their ability to replicate the condition experimentally. Whirling arms, rotary rigs, curved test sections and bent wind tunnel models are experimental techniques capable of replicating some aspects of the cornering condition, but are all compromised solutions. Numerical simulation is not limited in the same way and permits investigation into the condition. However, cornering introduces significant change to the flowfield and this must be accommodated for in several ways. Boundary conditions are required to be adapted to allow for the curved flow occurring within a non-inertial reference frame. In addition, drag begins to act in a curved path and variation in Re occurs within the domain. Results highlight the importance of using correct analysis techniques when evaluating aerodynamic performance for cornering vehicles

    The Aerodynamics of a Cornering Inverted Wing in Ground Effect

    Get PDF
    For racing car configurations an inverted wing produces negative lift that allows increased levels of acceleration to be maintained through corners. Routine aerodynamic analysis, however, will typically be in the straight-line condition. A numerical analysis of the inverted T026 wing geometry through the curved path of a constant radius corner was conducted. The asymmetrical properties of the oncoming flow resulted in the introduction of a rolling and yawing moment along the span, as well as side-force. Yaw angle, flow curvature and a velocity gradient resulted in changes to the pressure distribution over the wing surface. Primary vortex behaviour was observed to differ significantly in both direction and structure

    Aerodynamics of a Supersonic Projectile in Proximity to a Solid Surface

    Get PDF
    Flow around a Mach 2.4 NATO 5.56 mm projectile in close proximity to a ground plane was investigated using computational fluid dynamics for a direct numerical reproduction of live-range experiments. The numerical approach was validated against both the live-range tests and subsequent wind-tunnel experiments. A nonspinning half-model and a full, spinning projectile were examined to clarify the influence of rotation. Multiple ground clearances were tested to obtain clear trends in changes to the aerodynamic coefficients, and the three-dimensional propagation and reflection of the shock waves were considered in detail. The behavior of the flow in the near wake was also studied as ground clearance was reduced. Ground proximity was found to significantly increase the drag force acting on the projectile, as well as generate a force normal to the ground and an increased side force, when ground clearance was less than one diameter. For clearances between approximately 0.4 and 1 diameter, the pitching moment produced was nose-down. For lower clearances, a more distinct nose-up trend was produced. The generated side force was orders of magnitude lower than the normal and drag forces

    Impact of flow pulsatility on arterial drug distribution in stent-based therapy

    Get PDF
    Drug-eluting stents reside in a dynamic fluid environment where the extent to which drugs are distributed within the arterial wall is critically modulated by the blood flowing through the arterial lumen. Yet several factors associated with the pulsatile nature of blood flow and their impact on arterial drug deposition have not been fully investigated. We employed an integrated framework comprising bench-top and computational models to explore the factors governing the time-varying fluid dynamic environment within the vasculature and their effects on arterial drug distribution patterns. A custom-designed bench-top framework comprising a model of a single drug-eluting stent strut and a poly-vinyl alcohol-based hydrogel as a model tissue bed simulated fluid flow and drug transport under fully apposed strut settings. Bench-top experiments revealed a relative independence between drug distribution and the factors governing pulsatile flow and these findings were validated with the in silico model. Interestingly, computational models simulating suboptimal deployment settings revealed a complex interplay between arterial drug distribution, Womersley number and the extent of malapposition. In particular, for a stent strut offset from the wall, total drug deposition was sensitive to changes in the pulsatile flow environment, with this dependence increasing with greater wall displacement. Our results indicate that factors governing pulsatile luminal flow on arterial drug deposition should be carefully considered in conjunction with device deployment settings for better utilization of drug-eluting stent therapy.National Institutes of Health (U.S.) (grant NIH R01 GM-49039

    Simulation of Blood Flow and Nanoparticle Transport in a Stenosed Carotid Bifurcation and Pseudo-Arteriole

    Get PDF
    Numerical simulation of flow through a realistic bifurcated carotid artery geometry with a stenosis has been conducted for comparison to experimental measurements. The behaviour of simplified therapeutic nanoparticles in relatively low concentration was observed using a discrete particle approach. The role of size (diameters from 500 nm to 50 nm) in determining particle residence time and the potential for both desirable and undesirable wall interactions was investigated. It was found that mean particle residence time reduced with decreasing particle diameter, and the percentage of particles experiencing one or more wall interactions increased simultaneously. Further simulations were conducted on a scaled-down version of the geometry which approximated the size and flow conditions of an arteriole with capillary branches, and in this instance the mean residence time increased with decreasing particle diameter, owing largely to the greater influence of Brownian motion. 33% of all 50 nm particles were involved in wall interactions, indicating that smaller particles would have a greater ability to target, for instance, cancerous tumours in such regions

    Flow Field Phenomena about Lift and Downforce Generating Cambered Aerofoils in Ground Effect

    No full text
    A Computational Fluid Dynamics investigation was conducted to ascertain and highlight the different ways in which ground effect phenomena are present around both an upright (lift generating) and inverted (downforce generating) cambered aerofoil when in close proximity to the ground. The trends in force and flow field behaviour were observed at various ground clearances, while the angle of attack was held constant at 6 degrees. The different mechanisms by which ground effect influences the two different configurations were highlighted through observation of the pressure coefficient plots, contour maps of velocity and turbulence intensity and their effect on the normal and drag forces. The primary contributing factor to the increase in normal force for the lifting aerofoil, as the ground was approached, was a constriction and rise in pressure of the flow. For the downforce aerofoil, a significantly sped up flow increased suction and enhanced downforce. Also discussed is the observation of a reduction in lift for the upright aerofoil as its ground clearance is reduced through high and medium clearances

    Numerical investigation of streamwise vortex interaction

    No full text
    Streamwise vortices can be observed to interact in a number of real world scenarios. Vortex generators operating in boundary layers, as well as aircraft flying in formation can produce vortex interactions with multiple streamwise vortices in close proximity to each other. The tracking of these vortex paths as well as the location and nature of their breakdown is critical to determining how the structures can be used to aid flow control, and how large scale turbulence develops from them. Six configurations of two NACA0012 vanes were evaluated computationally to observe the interactions of a pre-existing vortex with a vortex generated downstream. Co and counter-rotating configurations at three different lateral spacings were used to vary vortex position and impingement on the rear vane. RANS testing of all configurations revealed that the strength of the downstream vortex in the co-rotating case was largely unaffected by the presence of the upstream vortex, while the counter-rotating case saw a reduction in vortex strength of up to 30%. LES simulations to better understand the flow mechanisms exhibit the Crow instability in the counter-rotating case and a helical merging pattern in the co-rotating condition. These findings show that multiple vortex generators can be used to re-energize vortices, allowing far longer vortices than commonly achieved in fields such as flow control. The outcomes indicate that accurate positioning of counter-rotating vortex pairs to cause the premature destruction of undesirable vortices is possible.10 page(s
    corecore