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Abstract: The influence of compressibility around an isolated inverted wing at 
a fixed Reynolds number was examined as relevant to the issue of wind tunnel 
scaling effects. Three-dimensional simulations were conducted for low ground 
clearances, at: full scale and a Mach number of 0.088, at 50% scale at Mach 
0.176, and at 25% scale at Mach 0.352. As the scale was reduced, the 
increasing peak local Mach number between the wing and the ground resulted 
in a higher propensity of the flow to separate towards the trailing edge, and for 
incompressible or full-scale CFD to underestimate the lift and drag coefficients 
by an ever-increasing margin. The lower vortex path was less affected. The 
results suggest that compressible CFD of a scale experiment ought to be 
conducted at the same Reynolds number and Mach number as the tunnel test 
for the best possible correlation at free-stream Mach numbers beyond 0.15. 
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compressibJe flow ground effect aerodynamics. She is also involved in work in 
the area of vascular fluid dynamics, covering both experimental and 
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South Wales, where she is also the Director of Laboratories for the School of 
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Sammy Diasinos is a Lecturer at Macquarie University who completed his 
MEng and PhD at University of New South Wales. lie was then employed by 
the Toyota and Williams Formula One (Fl) teams in a variety of computational 
and experimental engineering roles, eventually becoming the Head of CFD 
Development for the Caterham Fl team. Upon returning to academia, he has 
been pursuing his research interests in aerodynamics of sport and the 
automotive industry, with an emphasis in understanding and extending the 
limitations of both experimental and computational approaches related to these 
fields. 

Introduction 

A designer has three options for examining the aerodynamic characteristics of a racing 
car or its bodywork components: wind tunnel testing with a model, CFD simulation, and 
track testing with an actual vehicle. The latter is rare in the context of ongoing design 
development (Zhang et al., 2006), and the former two are usually performed in close 
concert with CFD both filling in gaps in tunnel testing and simulating scenarios not 
possible in experimental conditions (Toe!, 2013). 

When it comes to racing car testing and simulation, compressibility effects have yet 
to be properly investigated and accounted for (Zhang et al., 2006). Given that a wing in 
ground effect can produce local velocities at its suction peak significantly higher than 
those produced out of ground effect, the Mach numbers in such flowfields may result in 
significant density changes in the air between the wing and ground. 

There are many factors which can influence the fidelity of comparisons between wind 
tunnel data and CFD simulations; for instance sting interference, wall interference, and 
errors inherent to the measurement techniques and those which stem from tunnel 
calibration. In Reynolds-averaged Navier-stokes (RANS) CFD, errors arise from the 
mesh, turbulence model and treatment of transition, the Reynolds-averaging process itself 
in calculating a steady flowfield, and the numerous simplifications often made such as 
elimination ofstings and small-scale geometric features. 

In the midst of these other factors and potential sources of uncertainty, the influence 
of density changes in the flow could be masked even if they are as important as recent 
studies on a single-element airfoil and wing indicate (Doig et al., 2007, 2011). Those 
results showed that incompressible simulations could underpredict drag and lift forces of 
an inverted wing in ground effect by several percent even at a freestream Mach number 
of 0.15. The experiments of Ranzenbach (1995) and Ranzenbach and Barlow (1994, 
1995, 1996, 1997), were conducted at a freestream velocity of approximately 45 ms-1 and 
compared to incompressible CFD. The Mach number in that instance was between 



0.13 and 0.14, which the authors explicitly state was chosen so as to avoid introducing 
significant compressibility effects in the accelerated region, though the possible extent of 
such effects was not speculated upon. 

As an illustration of the relevance of the study described in this paper, the Formula I 
regulations have stated since 20 I 0 that "no wind tunnel testing may be carried out using a 
scale model which is greater than 60 percent of full size" and "no wind tunnel testing 
may be carried out at a speed exceeding 50 metres/second" (FIA, 20 13). These are 
measures essentially designed to reduce costs. If testing is conducted with 50% scale 
models, the 50 ms-' tunnel speed would equate to 25 ms-' for a full-scale CFD model at 
the same Reynolds number. 

The study by Doig et al. (20 II) described a comparison between compressible and 
incompressible CFD loosely equivalent to comparing incompressible CFD to results 
obtained by a full-scale vehicle on track as the Reynolds number was left to vary fteely 
with increasing velocity. The study did not consider the influence of Reynolds number as 
separated ftom that of Mach number, and therefore neglected the scenario relevant to 
testing development whereby Reynolds-scaled models are used and matched to full-scale 
(incompressible) modelling at a different Mach number. The present study outlines a 
similar scenario, but one in which the goal would be to correlate full-scale CFD to 
scale-model wind tunnel tests, and where precise Reynolds-scaling may be perceived as 
being sufficient for comparisons due to the relatively low speeds involved. This scenario 
is industry-relevant, and the parameters considered are outlined in Table I. While flow 
features such as transition and separation - traditionally difficult to predict with RANS 
CFD - would be more influential in correlation issues, it is proposed that compressibility 
effects are relatively easy to account for in simulations and therefore worth quantifying. 

Table I List of Mach and Reynolds numbers and related parameters 

Mach no. Velocity (ms-1) km/h mph Re Scale 

106 

0.1764 60 216 136.2 0.459 X 106 50% 

0.3528 120 432 268.4 0.459 X 106 25% 

0.882 30 108 67.1 0.459 X 100% 

If a body is slender and the flowfield is sufficiently two-dimensional as one would expect 
of the mid-span of a non-tapered, non-swept wing, the Prandti-Giauert rule may be 
considered applicable (Giauert, 1928), and the effectiveness of this as a straightforward 
compressible correction is examined compared to the CFD-predictions. 

Methodology 

A commercially-available finite-volume RANS solver, ANSYS fluent, was used to obtain 
all of the data. Steady-state solutions were generated using the implicit, pressure-based, 
coupled solver. 

Convergence criteria for all simulations were deemed to be met not only when the 
mass and momentum scaled-residual errors changed by less than 0.0 I% over I ,000 
continued iterations, but also when the aerodynamic force coefficients on the body ceased 
to change by the same percentage over that period. Results were obtained using 64-bit 
double precision and a second order node-based upwinding discretisation scheme. A 
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standard three-coefficient Sutherland (1893) viscosity model was applied to simulations 
involving compressible flow although the influence of this modelling choice was not 
significant at such relatively low Mach numbers. 

A fully-structured hexahedral grid was generated for each individual ground 
clearance. The coordinates of the original wing can be found in Zerihan (200 I); it was a 
modified LS(I)-0413 MOD section, with a constant cross section chord of223.4 mm and 
a span of I, I 00 mm (75% of the moving ground width), and featured a basic endplate 
(250 x I00 x 4 mm). The aspect ratio of the wing was 4.92, representing a wing 
approximately 80% of a more complex, full-scale Formula I wing. The trailing edge of 
the main section was blunted to a finite 0.007c thickness. Some relevant characteristics of 
the wing in ground effect are shown in Figure I. 

Figure l Notation for an inverted wing (section) in ground effect 

a 
c=0.2234m 

All cases were run as semi-span models with a symmetry plane in the middle of the wing 
(z = 0). For the present manuscript, the coordinate origin is at the leading edge of the 
wing on the symmetry plane (semi-span). The boundaries of the wind tunnel 
(2.1 x 1.7 m) were used, although with a rectangular cross-section rather than the octagon 
used in the actual tunnel, as this has been shown in recent literature to have negligible 
influence on the results (Diasinos et al., 2013). 

The oncoming air was set at 30 ms-' (as was the moving ground simulating the belt in 
the tunnel), and the chord-based Reynolds number for all experiments, was in the range 
of 0.43--0.46 x I 06 In the present CFD, density was kept at a constant and the Reynolds 
number was matched for validation purposes. 

The wing was held at a reference incidence of 3.45° (anticlockwise, or 
nose-downwards rotation from horizontal), with the ground clearance, defined in terms of 
h/c, measured from the point on the wing surface closest to the ground plane, as shown in 
the schematic of Figure I. In the original experiments, freestream turbulence intensity 
was measured as being 0.2%, and boundary layer transition on the wing was tripped with 
a grit strip at I 0% of the chord from the leading edge - this feature was accounted for in 
the present CFD by crude introduction of a laminar zone ahead of I0% c. For the 
purposes of the numerical model, the test section was assumed to extend 7c upstream of 
the leading edge, and 15c downstream. 

Mesh nodes were concentrated in the vicinity of the wing and the endplate, with 
anisotropic cells growing from the wing and ground boundaries to better capture the 
boundary layer. The wall y' was between I and 2 on the wing when flow was attached, 
enabling high-resolution wall modelling. Coarse, standard and fine meshes were 
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evaluated against the experimental data for h/c ~ 0.179, Uw ~ 30 ms-1 
• Similar meshes 

were constructed for some other clearances but the results at hie ~ 0.179 are suitably 
representative of all cases. The general meshing strategy is shown in Figure 2. 

Figure 2 Example of the structured mesh around the semi-span wing with ground 

The coarse mesh featured 2 x I 06 cells; 130 cells around the wing in the chordwise sense 
(3 across the blunt trailing edge) and 30 span wise cells, spaced such that the endplate 
wall region was adequately resolved. The standard mesh, as shown in Figure 2, featured 
190 cells around the wing (8 across the blunt trailing edge) and 45 span wise cells, for a 
total of3.11 x 106 volumes. 

The finest mesh featured a greater cell density in the endplate and wake regions to 
investigate whether the endplate vortices were being sufficiently resolved (and thus 
influencing the lift and drag forces obtained); it featured 195 cells around the wing and 
80 spanwise cells, with a finer spacing in the wake region to approximately 2c from the 

106trailing edge. The total number of cells was 7.65 x All the results were produced 
using the Realisable k-e turbulence model with enhanced wall modelling (Shih et at., 
1995); this model has been shown in several recent studies on the same wing to be the 
most acceptable fully-turbulent model for reproducing experimental results (Mahon and 
Zhang, 2006; Doig et al., 2011; Diasinos et al., 2013), and therefore was deemed 
appropriate for the current investigation. 

Table 2 Mesh refinement and force coefficients as compared to experimental results 

Mesh (no. volumes) c, Cn 

2.00 X 106 1.21 0.06 

3.(( X (06 1.24 0.057 

7.65 X 106 1.24 0.056 

(experimental) 1.28 0.0545 

Source: Zerihan (200 I) 



Predicted lift and drag coefficients, compared to the experimental results in Table 2, 
show that the fine and standard meshes were within very close agreement (approx. I% or 
less), but the coarse mesh overpredicted drag and underpredicted lift by a more notable 
margin. The higher drag is likely to be a consequence of having fewer cells in the 
immediate wake and on the blunt trailing edge, leading to an artificially thick near-wake. 
The standard mesh was therefore used for all subsequent runs in an effort to limit 
unnecessary computational expense. 

For further validation, results are presented in comparison to the experimental 
pressure distributions (Figure 3), and lift and drag coefficients (Figure 4) for ground 
clearances of hie ~ 0.313, 0.179 and 0.067. The CFD reproduces the force trends very 
well (including the lift loss at approx. hie ~ 0.1 ), somewhat over-predicting drag and 
under-predicting lift at higher clearances. It is worth noting that compressible simulations 
reproduced these results to within less than I% difference in coefficients, indicating that 
the compressible solver could converge adequately at the lowest Mach number, but also 
that some minor density changes were present in the flow resulting in slight differences in 
the solution pressure distributions. 

Figure 3 	 Pressure distributions from CFD at hie= 0.313, 0.179 and 0.067 as compared to 
experimental results 

0.5 

0 

0-0.5 

-1 

Cp -1.5 

-2 	 o Exp.h/c=0.313 

A Exp. h/c = 0.179 
-2.5 o Exp. h/c = 0.067 

-- CFDhic= 0.313-3 
--- CFD hie= 0.179 

-3.5 ··········· CFD hie= 0.067 

-4 
0 0.2 0.4 0.6 0.8 

xlc 

Source: Zerihan (2001) 



3 

Figure 4 CFD predictions of lift and drag coefficients as compared to experimental results 
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The pressure coefficients obtained showed excellent agreement with the experimental 
results, with only a mild over-prediction of the suction peak at the lowest ground 
clearance ofh/c ~ 0.067 and under-prediction of the same point at h/c ~ 0.313 (causing 
the under-prediction of lift at this clearance). 

Compressible simulations for Reynolds-scaled simulations 

Using the experiments of Zerihan (200 I) as a starting point, this paper examines a 
scenario where the Reynolds number based on the wing chord is fixed at 0.459 x 106 

. 

This allows compressibility and Mach number effects to be divorced from the influence 
of Reynolds number. 

While the Reynolds number may be exactly scaled, compressibility effects are 
non-linear and the difference in Mach number may skew the comparison, particularly 
when incompressible simulations are used (as is common practice currently in 
automotive fields). As computing power continues to increase and the expense of large 
clusters reduces, the time-saving represented by running incompressible flow simulations 
may be considered relatively small and compressible flow simulations may become a 
more viable prospect. However, it is more likely that the ability to test and examine a 
greater number of part variants would take precedence unless it was clear that the 
incompressible CFD was fundamentally unsuitable. 



The T026 wing used by Zerihan (200 I), was tested at hie ~ 0.313, 0.179 and 0.067 as 
in the validation cases discussed previously: clearances low enough to produce 
significantly increased peak local Mach numbers as compared to a freestream case, and 
representative of typical wing section ground clearances that might be examined in a 
wind tunnel test. As outlined in Table I, the oncoming flow and ground speed of30 ms-1 

(Moo ~ 0.0882) for the standard-size wing of Zerihan (2000) was Reynolds-scaled for 
Re ~ 0.459 x I 06 at 50% for a freestream of 60 ms-1 (Moo~ 0.179), and then again at 25% 
scale for a rreestream of 120 ms 1 (Moo ~ 0.352). The latter scale could be deemed as a 
more likely prospect for university-level research, where large wind tunnels with rolling 
roads are uncommon. 

3.1 Freestream comparison case 

In order to assess the extent to which ground proximity is influential in producing 
differences between incompressible and compressible CFD simulations, the three 
Reynolds-scaled cases were run for a 'freeflight' (no ground) case. Figure 5 shows that 
compressible C0 does not change significantly !Tom Moo ~ 0.0882 to Moo ~ 0.1764, and 
corresponds closely to the incompressible result (reducing by a fraction which would be 
within the bounds of numerical error between compressible and incompressible 
simulations). At Moo ~ 0.3528, the compressible C0 is approximately 3.5% greater. The 
compressible CL in Figure 6 exhibits a small difference at Moo ~ 0.0882, increasing to 
around 1% at Moo~ 0.1764 and 3.7% at Moo~ 0.3528. The pressure distributions for each 
case in Figure 7 indicate that the difference in lift at the highest Mach number is due 
almost exclusively to the more prominent suction peak at approximately x/c ~ 0.18, 
where the air has been accelerated to its maximum peak local Mach number. 

Figure 5 Compressible and incompressible drag coefficients for the wing in free-flight 
(no ground) at different scales 
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Figure 6 Compressible and incompressible lift coefficients for the wing in free-flight (no ground) 
at different scales 
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Figure 7 	 Compressible pressure coefficient distributions for the wing in free-flight (no ground) at 
scale, compared to the baseline full-scale incompressible result 
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If we treat the compressible case as the most physically-realistic representation of the 
flowfield, resulting in the values of aerodynamic coefficients the wing would actually 
experience in the real world, it is clear that for a freestream Mach number of 0.3528 the 
incompressible assumption is no longer appropriate if good accuracy is to be achieved. 
This is consistent with the fact that the T026 aerofoil section can be classified as 
high-lift, and therefore produces a considerable acceleration of the flow around its shape; 
indeed, the peak local Mach number for this compressible case is 0.547. Even before 
looking at the ground effect cases, it is obvious that the peak local Mach number in the 
presence of the ground will be considerably higher, and thus the trends observed in 
freestream will be exaggerated. The 25% scale model at Moo~ 0.3528 represents a speed 
of 120 ms-1 This is slightly above that which almost all large-scale and advanced 
moving-ground tunnels can achieve, but it has been retained for comparison in the 
subsequent cases as the speed it represents is not far beyond the maximum of, for 
example, an Indy car Series racing car. It is certainly within the range of a vehicle such as 
a top-fuel dragster or land speed record car, which might be tunnel-tested at scale using, 
for instance, a less sophisticated elevated ground plane. 

For comparison, a straightforward application of the Prandti-Giauert rule is used on 
the incompressible result to account for the highest tested Mach number at 25% scale. 
Since the flow at the mid-span is relatively two-dimensional and the compressibility 
effects are mild, the correction proves to be excellent apart from the region where the 
leading edge curvature blends to the lower surface; therefore, in this instance, the 
Prandti-Giauert rule could be applied with confidence for a simple correction. 

3.2 Ground effect cases 

In Figures 8 and 9, the influence of ground proximity on the lift and drag coefficients is 
revealed to be considerable, as it causes more significant differences in Co and CL 
respectively between incompressible and compressible cases than were obtained in the 
free-flight simulations. 

At Moo~ 0.0882, the drag predictions were negligibly different at all clearances, but 
the incompressible simulation under-predicted CL by around 0.5% for hie ~ 0.179 and 
over-predicts by the same amount for hie ~ 0.067. At M ~ 0.1764, the incompressible 
simulations under-predicted CL at the two higher clearances, and over-predicted at the 
lowest height. The non-linearity of compressibility effects is evident as the trends are 
extended to the Moo ~ 0.3528 cases, where lift is under-predicted by the incompressible 
simulations by 6.1 %, and drag by 13.9%, at hie~ 0.179- a broadly exponential increase 
in the margin by which the incompressible simulations are underestimating the force 
coefficients. For the lowest ground clearance, the marked increase in local Mach number 
at the suction peak leads to an increasingly strong pressure gradient that results in 
markedly enhanced separation towards the trailing edge- this results in the predicted lift 
being over-predicted by over I 0% by the incompressible simulation, and drag being 
under-predicted by around 15%. 
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Figure 8 	 Compressible (C) and incompressible (I) drag coefficients for the wing at scale and for 
ground clearances ofh/ ~ 0.313, 0.179 and 0.067 
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Figure 9 	 Compressible and incompressible lift coefficients for the wing at scale and for ground 
clearances of hi~ 0.313, 0.179 and 0.067 
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The results indicate that even at a relatively modest freestream Mach number of 
approximately 0.25, one could be better served by Mach-scaling experiments to compare 
to incompressible CFD than by maintaining the Reynolds number regardless of the 
freestream velocity. In other words, allowing the Reynolds number to increase as a 
consequence of a Mach number increase while maintaining the original model scale is a 
more appropriate way to approach the issue of direct comparison, beyond a certain 
freestream Mach number, than to continue to decrease the model scale while maintaining 
the same Reynolds number as the full-scale original. This would be accompanied by 
consequences for transition locations and behaviour, which will not be discussed here but 
could distort the interpretation of results further. Thus, even before further investigation, 
it is already clear that the most appropriate way to model the flow, perhaps at 
Mw ~ 0.0882 and certainly at Mw ~ 0.1764, is to consider the air as compressible in all 
simulations. 

3. 3 Resultant pressure coefficient distributions 

From this point, the h/c ~ 0.179 case will be used as indicative of the flow response to 
compressibility. To examine in more detail the influence the Mach number and therefore 
flow compressibility has on the force coefficient results obtained, it is instructive to look 
to the sectional pressure distributions presented in Figure I 0 for the semi-span (symmetry 
plane). 

Figure 10 Compressible vs. incompressible semi-span pressure coefficient distributions at 
Re = 0.459 x I06 for 50% and 25% scale, referenced to full-scale incompressible at 
hie~ 0.179 
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It is clear that the main cause for the differences noted between compressible and 
incompressible simulations stems from an incompressible under-prediction of the suction 
peak on the lower surface. This is present to a small degree at Moo ~ 0.1764, extending 
across a longer chordwise stretch of the lower surface and altering the pressure gradient 
downstream to the trailing edge. 

At the lower two Mach numbers, the upper-surface pressure distributions are similar. 
However, for the 25% scale model at Moo~ 0.3528, the stagnation point has moved down 
such that the effective angle of oncoming flow just prior to the leading edge is decreased 
by almost 3°. From the full-scale to half-scale model, the stagnation point moves by less 
than I% of the maximum section thickness, but from the full-scale to the quarter-scale 
geometry, the stagnation point moves downwards by a more significant 2.18% of 
maximum section thickness. This allows more flow over the upper surface, but is 
compensated in terms of negative lift by the additional acceleration between the wing and 
the ground such that this change to the oncoming flow angle that the wing experiences 
does not affect the wing's performance detrimentally overall. The lower-surface suction 
peak is significantly under-predicted by the incompressible simulation, and at the highest 
Mach number the extent of the rearwards adverse gradient is now considerably 
under-estimated as well, due to the changed trailing-edge conditions facilitated by the 
altered upper-surface C, distribution. 

The primary driver for the differences is the ability of the density of the fluid to 
change as the Mach number is increased, and the extent of this is illustrated in Figure II. 
Here, the density variations around the wing relative to the freestream value at the 
mid-span symmetry plane are clear, with close to a 6% variation in density at 
Moo~ 0.1764. While at this scale the peak local Mach number is less than I% higher for 
the compressible simulation, it is enough to slightly alter the pressure gradient, whereas 
the 25% scale model experiences a significantly higher peak local Mach number (at a 
maximum of -0.79). As the variations are highly three-dimensional in character, the 
structural response of the wing would also be affected, leading to different twist 
behaviour to that which would be expected from incompressible results. 

This three-dimensionality, coupled with the increasing influence of separation at the 
trailing edge discussed below, means that the Prandtl-Giauert rule breaks down in its 
ability to apply a simple correction to the incompressible result, and Figure I 0 highlights 
the underprediction of the suction peak by a considerable margin, as well as discrepancies 
close to the leading edge and towards the rear where the onset of separation has been 
exaggerated. Gothert's (1946) extension to the rule for three-dimensional flows would be 
a more appropriate treatment, but is similarly limited to slender bodies featuring attached 
flow. Therefore a full comparison of this more complex transformation has not been 
implemented here, particularly since a full vehicle features many bluff aspects and 
strongly vortex-influenced components that would be subject to compressible effects 
(Keogh et al., 20 12). 

As shown in Figure 12, the Moo ~ 0.3528 (25% scale) case experiences a notable 
separation near the trailing edge. The overlays on the lower surface density distributions 
on Figure II shows the regions in which the x-direction shear stress on the wing equals 
zero, indicating that the separation develops in the centre region of the wing, and remains 
attached at the endplate where Mach numbers are lower due to the vortices present there. 
These results indicate that any full-scale wing in ground effect which is designed for peak 
performance close to the point at which flow will separate could well experience 



significant flow separation in wind tunnel tests at a higher Mach number for the same 
Reynolds number being used for full-scale CFD. This creates the potential for 
considerable discrepancies when compared even to compressible full-scale simulations if 
the Mach number remains mismatched, and has implications for the flow reaching 
vehicle components which lie downstream of the wing. It is also conceivable that 
conflicting data about flow separation location would be obtained, and this is often a vital 
parameter for the effectiveness of a wing element and a leading reason for wind tunnel 
investigation. 

Figure 11 Non-dimensional density variations (relative to freestream) around the wing on the 
symmetry plane (left) and on the lower surface (right) for the three Reynolds-scaled 
cases 
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Figure 12 Streamlines around the trailing edge at the symmetry plane for (a) 50% scale and 
(b) 25% scale compressible cases for h/c = 0.179 (see online version for colours) 
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The peak local Mach numbers achieved by the flow between the wing and the ground, 
shown in Figure 13, are significantly higher than those for the free-flight case, where the 
peak accelerated flow only reached 1.55 times the freestream Moo ~ 0.3528 for the 25% 
scale case. The maximum MJM for the full-scale model at Moo~ 0.0882 is equal to 1.79, 
and at Moo ~ 0.1794 this value is 1.81. This could not be considered a significant 
discrepancy in itself although in real terms the peak local Mach number in the 50% case 
is 0.33 and therefore already pushing into the compressible regime. At 25% scale, the 
flow accelerates to a local peak 2.12 times the freestream, and the actual peak Mach 
number is therefore 0.748, indicating that the wing is not far from reaching its critical 
Mach number for this ground clearance and angle ofattack. 

Figure 13 	 Non~dimensional Mach number variations (relative to frccstream) around the wing on 
the symmetry plane for 50% and 25% scale compressible cases at h/c = 0.179 
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3.4 Vortex and wake behaviour 

A comparison of the behaviour of the lower vortex from the wing/endplate junction is 
presented in Figures 14(a) and 14(b), with the vortex path assessed at planes lc, 1.2c, 
1.4c, 1.6c, 1.8c, 2c, 2.5c, 3c, 4c and 5c downstream of the trailing edge. The plot shows 
that the path of the vortex remains largely unaffected by the increase in freestream Mach 
number and decreasing scale. The figures show the y and z positions of the vortex 
changing by only small increments from case to case, though an exaggeration of the 
general trend is present for the 25% scale case at the highest Mach number. This remains 
a fairly minor difference until around two chord lengths downstream of the wing trailing 
edge, and on an actual open-wheel racing car the vortex would have, by this point, 
interacted in some way with the front wheels. 



Figure 14 Lower vortex core path moving downstream in (a) the x-y plane and (b) the x-z plane 
for hie~ 0.179 
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Figure 15 presents u!Uoo wake profiles for all the incompressible and compressible cases 
compared in this paper, at 1.2c and 2c from the leading edge, respectively (i.e. 0.2c and 
I c downstream of the training edge). The profiles in both instances for all the 
incompressible cases are almost exactly identical, as one would expect from the other 
results discussed to this point. At full scale and Moo ~ 0.0882, the wake profiles for 
compressible and incompressible cases are essentially similar, with the compressible case 
predicting a slightly higher peak velocity deficit (<0.1% greater) at 1.2c and a more 
substantial deficit by 2c (0.9% greater). Comparing the two 50% scale, Moo ~ 0.1764 
cases, the velocity deficit differences have increased to 2.5% at 1.2c and 1.2% at 2c. The 
compressible centreline of the wake is also situated subtly lower than its incompressible 
counterpart, as a result of the mild increase in pressure difference caused by the 
additional acceleration of the compressible flow under the wing. 
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Figure 15 Streamwise velocity wake profiles on the symmetry plane at (a) 1.2c and (b) 2c from 
the leading edge for hie ~ 0.179 
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This effect is magnified when the oncoming Mach number is increased to 0.3528 and the 
scale reduced to 25%. The wake is visibly and distinctly stronger, thicker, and closer to 
the ground, consistent with the enhanced separation observed previously. This confirms 
that the primary cause of the marked increase in predicted drag is the effect on the wake 
of the increased pressure gradient of the lower surface. 

Given the 	 minor differences in vortex behaviour but the more substantial 
incongruities in the streamwise wake profiles behind the wing on the symmetry plane, the 
flow reaching any components downstream of the wing (i.e., the wheels, suspension or 
sidepods of an open-wheel race car) would experience conditions for higher freestream 
Mach numbers which do not conform closely to those seen at the lowest freestream Mach 
number. 

3. 5 Further comments 

Although it is possible that the Reynolds and Mach number scaling effects establish 
themselves in different fashions in the flow, leading to a misleading constructive or 
destructive interference between the two, Mach scaling in most large-scale subsonic 
tunnels would involve impractical or prohibitively-expensive additional equipment to 
modifY the pressure and temperature being delivered to the test section. For this reason 
this possibility has not been pursued further here. One can conclude from the data 
presented that the only way to achieve truly effective validation between experiments and 
CFD for inverted wings even at relatively low Mach numbers is to ensure the 
computational model matches the experiment as closely as possible; that is, not only 
should the Reynolds number be matched, but the scale and Mach number should be 
comparable and, given that tunnel blockage would exaggerate any compressible effects 
further, the test section geometry should be represented with reasonable fidelity in the 



computational model as well. Accepting the considerable influence which compressibility 
has on the flow even at the lowest end of the range of freestream velocities examined 
here, unlike for the same wing in free (unbounded) flight or a section which is much less 
cambered than the T026, one can see that running all CFD as compressible is desirable in 
order to obtain the most accurate simulation results with which to compare to 
experimental results. 

It also appears likely that other racing car components, such as wheels, rear wings, 
diffusers, etc. will also experience significant compressibility, and the cumulative effect 
of many small discrepancies, when comparing tunnel tests or track data to incompressible 
CFD, may culminate in differences in result sets which should not be ignored. 

4 Conclusions 

Compressible effects can affect the results of Reynolds-scaled wind tunnel tests on 
models which experience a higher rreestream Mach number in order to maintain a 
Reynolds number consistent with a full scale model in CFD or an actual vehicle on track. 
In this study, the Reynolds number of flow around an inverted wing was maintained at 
0.459 x I 06 as the model was scaled at 50% and 25%, the former of which is very 
common in race car wind tunnel testing. 

The discrepancy at 50% scale and a Mach number of0.1764, compared to a full-scale 
model at Mach 0.0882, was 1% and 3.7% in terms of drag and lift respectively, and the 
differences increased non-linearly as the Mach number was increased again for a 25% 
scale model. As the incompressible simulation is essentially similar to the compressible 
simulation at the lowest Mach number, treating the flow as incompressible 
underestimates the aerodynamic coefficients by the same amount as failing to Mach-scale 
the model. A simple Prandtl-Glauert compressibility correction fails to predict the 
magnitude of discrepancies in ground effect for centre-span pressure coefficients, and a 
three-dimensional equivalent would be difficult to apply to a full vehicle with confidence; 
this underscores the need to perform full compressible simulations in order to obtain 
more accurate results. 

Compressible effects on, in particular, transition and separation, would be better 
examined using large-eddy simulation. While increasing the computational cost of 
simulation beyond that which even the leading teams can currently contemplate, in the 
future this will continue to become more feasible and from a pure research point of view 
is achievable and pertinent for subsequent studies. 
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