13 research outputs found

    Multiomics Longitudinal Modeling of Preeclamptic Pregnancies

    Get PDF
    Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear and that poses a threat to both mothers and infants. Specific complex changes in women\u27s physiology precede a diagnosis of preeclampsia. Understanding multiple aspects of such a complex changes at different levels of biology, can be enabled by simultaneous application of multiple assays. We developed prediction models for preeclampsia risk by analyzing six omics datasets from a longitudinal cohort of pregnant women. A machine learning-based multiomics model had high accuracy (area under the receiver operating characteristics curve (AUC) of 0.94, 95% confidence intervals (CI):[0.90, 0.99]). A prediction model using only ten urine metabolites provided an accuracy of the whole metabolomic dataset and was validated using an independent cohort of 16 women (AUC= 0.87, 95% CI:[0.76, 0.99]). Integration with clinical variables further improved prediction accuracy of the urine metabolome model (AUC= 0.90, 95% CI:[0.80, 0.99], urine metabolome, validated). We identified several biological pathways to be associated with preeclampsia. The findings derived from models were integrated with immune system cytometry data, confirming known physiological alterations associated with preeclampsia and suggesting novel associations between the immune and proteomic dynamics. While further validation in larger populations is necessary, these encouraging results will serve as a basis for a simple, early diagnostic test for preeclampsia

    Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset

    Get PDF
    Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10−40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10−7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies

    Bioengineered RNA Therapy in Patient-Derived Organoids and Xenograft Mouse Models

    No full text
    Therapeutic RNAs, such as antisense oligonucleotides (ASOs), aptamers, small-interfering RNAs (siRNAs), microRNAs (miRs or miRNAs), messenger RNAs (mRNAs), and guide RNAs (gRNAs), represent a novel class of modalities that not only increase the molecular diversity of medications but also expand the range of druggable targets. To develop noncoding RNA therapeutics for the treatment of cancer diseases, we have established a novel robust RNA bioengineering platform to achieve high-yield and large-scale production of true biologic RNA agents, which are proven to be functional in the control of target gene expression and effective in the management of tumor progression in various models. Herein, we describe the methods for bioengineered RNA (BioRNA or BERA) therapy in patient-derived organoids (PDOs) in vitro and patient-derived xenograft (PDX) mouse models in vivo. The efficacy of a BioRNA, miR-1291, in the inhibition of pancreatic cancer PDO and PDX growth is exemplified in this chapter

    Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy

    No full text
    BackgroundHypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM.MethodsWe performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts).ResultsIntegrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance.ConclusionsOverall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury
    corecore