24 research outputs found

    A Key Role for E-cadherin in Intestinal Homeostasis and Paneth Cell Maturation

    Get PDF
    E-cadherin is a major component of adherens junctions. Impaired expression of E-cadherin in the small intestine and colon has been linked to a disturbed intestinal homeostasis and barrier function. Down-regulation of E-cadherin is associated with the pathogenesis of infections with enteropathogenic bacteria and Crohn's disease. To genetically clarify the function of E-cadherin in intestinal homeostasis and maintenance of the epithelial defense line, the Cdh1 gene was conditionally inactivated in the mouse intestinal epithelium. Inactivation of the Cdh1 gene in the small intestine and colon resulted in bloody diarrhea associated with enhanced apoptosis and cell shedding, causing life-threatening disease within 6 days. Loss of E-cadherin led cells migrate faster along the crypt-villus axis and perturbed cellular differentiation. Maturation and positioning of goblet cells and Paneth cells, the main cell lineage of the intestinal innate immune system, was severely disturbed. The expression of anti-bacterial cryptidins was reduced and mice showed a deficiency in clearing enteropathogenic bacteria from the intestinal lumen. These results highlight the central function of E-cadherin in the maintenance of two components of the intestinal epithelial defense: E-cadherin is required for the proper function of the intestinal epithelial lining by providing mechanical integrity and is a prerequisite for the proper maturation of Paneth and goblet cells

    Yope of yersinia, a gap for rho gtpases, selectively modulates rac-dependent actin structures in endothelial cells.

    No full text
    International audienceYersinia spp. inject effector proteins (Yersinia outer proteins, Yops) into target cells via a type III secretion apparatus. The effector YopE was recently shown to possess GAP activity towards the Rho GTPases RhoA, Rac and CDC42 in vitro. To investigate the intracellular, 'in vivo' targets of YopE we generated a Yersinia enterocolitica strain [WA(pYLCR+E)] that injects 'life-like' amounts of YopE as only effector. Primary human umbilical vein endothelial cells (HUVEC) were infected with WA(pYLCR+E) and were then stimulated with: (i) bradykinin to induce actin microspikes followed by ruffles as an assay for CDC42 activity followed by CDC42 stimulated Rac activity; (ii) sphingosine-1-phosphate to form ruffles by direct Rac activation; or (iii) thrombin to generate actin stress fibres through Rho activation. In WA(pYLCR+E)-infected HUVEC microspike formation stimulated with bradykinin remained intact but the subsequent development of ruffles was abolished. Furthermore, ruffle formation after stimulation with sphingosine-1-phosphate or thrombin induced production of stress fibres was unaltered in the infected cells. These data suggest that YopE is able to inhibit Rac- but not Rho- or CDC42-regulated actin structures and, more specifically, that YopE is capable of blocking CDC42Hs dependent Rac activation but not direct Rac activation in HUVEC. This provides evidence for a considerable specificity of YopE towards selective Rac-mediated signalling pathways in primary target cells of Yersinia
    corecore