98 research outputs found

    Band gap renormalization in photoexcited semiconductor quantum wire structures in the GW approximation

    Full text link
    We investigate the dynamical self-energy corrections of the electron-hole plasma due to electron-electron and electron-phonon interactions at the band edges of a quasi-one dimensional (1D) photoexcited electron-hole plasma. The leading-order GWGW dynamical screening approximation is used in the calculation by treating electron-electron Coulomb interaction and electron-optical phonon Fr\"{o}hlich interaction on an equal footing. We calculate the exchange-correlation induced band gap renormalization (BGR) as a function of the electron-hole plasma density and the quantum wire width. The calculated BGR shows good agreement with existing experimental results, and the BGR normalized by the effective quasi-1D excitonic Rydberg exhibits an approximate one-parameter universality.Comment: 11 pages, 3 figure

    Precision determination of band offsets in strained InGaAs/GaAs quantum wells by C-V-profiling and Schroedinger-Poisson self-consistent simulation

    Full text link
    The results of measurements and numerical simulation of charge carrier distribution and energy states in strained quantum wells In_xGa_{1-x}As/GaAs (0.06 < x < 0.29) by C-V-profiling are presented. Precise values of conduction band offsets for these pseudomorphic QWs have been obtained by means of self-consistent solution of Schroedinger and Poisson equations and following fitting to experimental data. For the conduction band offsets in strained In_xGa_{1-x}As/GaAs - QWs the expression DE_C(x) = 0.814x - 0.21x^2 has been obtained.Comment: 9 pages, 12 figures, RevTeX

    Shifted Excitation Raman Difference Spectroscopy Applied to Extraterrestrial Particles Returned from the Asteroid Itokawa

    Get PDF
    Two extraterrestrial particles from the asteroid Itokawa are investigated applying Shifted Excitation Raman Difference Spectroscopy (SERDS). These particles were returned by the Hayabusa mission of the Japanese Space Agency JAXA. For SERDS a diode laser based microsystem light source at 488 nm is used for excitation. It has been found that fluorescence signals masking the Raman spectral features of interest can be substantially separated by applying SERDS. Therefore, SERDS improves the information obtained from the Raman spectra and enables a reliable analysis for investigations on extraterrestrial samples

    Ultrahigh-brightness 850 nm GaAs/AlGaAs photonic crystal laser diodes

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 93, 221102 (2008) and may be found at https://doi.org/10.1063/1.3040322.One-dimensional photonic crystal lasers emitting in the 850 nm range show high internal quantum efficiencies of 93% and very narrow vertical beam divergence of 7.1° (full width at half maximum). 50m broad area lasers with unpassivated facets exhibit a high total output power of nearly 20 W in pulsed mode with a divergence of 9.5°×11.3° leading to a record brightness of 3×108Wcm−2sr−1, being presently the best value ever reported for a single broad area laser diode. 100m broad devices with unpassivated facets show continuous wave operation with an output power of 1.9 W.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Extraordinary carrier multiplication gated by a picosecond electric field pulse

    Get PDF
    The study of carrier multiplication has become an essential part of many-body physics and materials science as this multiplication directly affects nonlinear transport phenomena, and has a key role in designing efficient solar cells and electroluminescent emitters and highly sensitive photon detectors. Here we show that a 1-MVcm−1 electric field of a terahertz pulse, unlike a DC bias, can generate a substantial number of electron–hole pairs, forming excitons that emit near-infrared luminescence. The bright luminescence associated with carrier multiplication suggests that carriers coherently driven by a strong electric field can efficiently gain enough kinetic energy to induce a series of impact ionizations that can increase the number of carriers by about three orders of magnitude on the picosecond time scale
    • 

    corecore