26 research outputs found

    Correlation between salivary secretion and salivary AQP5 levels in health and disease

    Get PDF
    Saliva samples are useful for noninvasive diagnosis of oral and systemic diseases. The water channel protein aquaporin-5 (AQP5) is released into human saliva. Salivary AQP5 levels show a diurnal variation with the secretion of high levels during the waking hours. An age-related decrease in salivary AQP5 levels parallels a decrease in the volume of saliva. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, induces the release of AQP5. Changes in salivary AQP5 levels after cevimeline administration occur simultaneously with changes in saliva flow rate. AQP5 and lipid rafts are released separately from human salivary glands upon M3 mAChR stimulation. In patients with diabetes mellitus or Sjögren’s syndrome, a decrease in salivary secretion occurs concomitantly with low salivary AQP5 levels. Salivary AQP5 levels correlate with salivary secretion in both healthy and disease states, suggesting that changes in salivary AQP5 levels can be used as an indicator of salivary flow rate and the effect of M3 mAChR agonists on human salivary glands

    Clinical Efficacy of Endocytoscopy for Gastrointestinal Endoscopy

    Get PDF
    Endocytoscopy (EC) is a contact-type optical endoscope that allows in vivo cellular observation during gastrointestinal endoscopy and is now commercially available not only in Japan but also in Asian, European Union, and Middle Eastern countries. EC helps conduct a highly accurate pathological prediction without biopsy. Initially, EC was reported to be effective for esophageal diseases. Subsequently, its efficacy for stomach and colorectal diseases has been reported. In this narrative review, we searched for clinical studies that investigated the efficacy of EC. EC seems to accurately diagnose gastrointestinal diseases without biopsy. Most of the studies aimed to clarify the relationship between endocytoscopic findings of gastrointestinal neoplasia and pathological diagnosis. Some studies have investigated non-epithelial lesions or diseases, such as inflammatory bowel disease or infectious diseases. However, there are few high-level pieces of evidence, such as randomized trials; thus, further studies are needed

    The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions

    No full text
    The neurohypophyseal peptide [Arg(8)]-vasopressin (AVP) exerts major physiological actions through three distinct receptor isoforms designated V1a, V1b, and V2. Among these three subtypes, the vasopressin V1b receptor is specifically expressed in pituitary corticotrophs and mediates the stimulatory effect of vasopressin on ACTH release. To investigate the functional roles of V1b receptor subtypes in vivo, gene targeting was used to create a mouse model lacking the V1b receptor gene (V1bR–/–). Under resting conditions, circulating concentrations of ACTH and corticosterone were lower in V1bR–/– mice compared with WT mice (V1bR+/+). The normal increase in circulating ACTH levels in response to exogenous administration of AVP was impaired in V1bR–/– mice, while corticotropin-releasing hormone–stimulated ACTH release in the V1bR–/– mice was not significantly different from that in the V1bR+/+ mice. AVP-induced ACTH release from primary cultured pituitary cells in V1bR–/– mice was also blunted. Furthermore, the increase in ACTH after a forced swim stress was significantly suppressed in V1bR–/– mice. Our results clearly demonstrate that the V1b receptor plays a crucial role in regulating hypothalamic-pituitary-adrenal axis activity. It does this by maintaining ACTH and corticosterone levels, not only under stress but also under basal conditions
    corecore