39 research outputs found
Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer.
BACKGROUND: The research emphasis in anti-cancer drug discovery has always been to search for a drug with the greatest antitumor potential but fewest side effects. This can only be achieved if the drug used is against a specific target located in the tumor cells. In this study, we evaluated Minichromosome Maintenance Protein 7 (MCM7) as a novel therapeutic target in cancer. RESULTS: Immunohistochemical analysis showed that MCM7 was positively stained in 196 of 331 non-small cell lung cancer (NSCLC), 21 of 29 bladder tumor and 25 of 70 liver tumor cases whereas no significant staining was observed in various normal tissues. We also found an elevated expression of MCM7 to be associated with poor prognosis for patients with NSCLC (P = 0.0055). qRT-PCR revealed a higher expression of MCM7 in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P < 0.0001), and we confirmed that a wide range of cancers also overexpressed MCM7 by cDNA microarray analysis. Suppression of MCM7 using specific siRNAs inhibited incorporation of BrdU in lung and bladder cancer cells overexpressing MCM7, and suppressed the growth of those cells more efficiently than that of normal cell strains expressing lower levels of MCM7. CONCLUSIONS: Since MCM7 expression was generally low in a number of normal tissues we examined, MCM7 has the characteristics of an ideal candidate for molecular targeted cancer therapy in various tumors and also as a good prognostic biomarker for NSCLC patients.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Weakly-supervised learning for lung carcinoma classification using deep learning
Abstract Lung cancer is one of the major causes of cancer-related deaths in many countries around the world, and its histopathological diagnosis is crucial for deciding on optimum treatment strategies. Recently, Artificial Intelligence (AI) deep learning models have been widely shown to be useful in various medical fields, particularly image and pathological diagnoses; however, AI models for the pathological diagnosis of pulmonary lesions that have been validated on large-scale test sets are yet to be seen. We trained a Convolution Neural Network (CNN) based on the EfficientNet-B3 architecture, using transfer learning and weakly-supervised learning, to predict carcinoma in Whole Slide Images (WSIs) using a training dataset of 3,554 WSIs. We obtained highly promising results for differentiating between lung carcinoma and non-neoplastic with high Receiver Operator Curve (ROC) area under the curves (AUCs) on four independent test sets (ROC AUCs of 0.975, 0.974, 0.988, and 0.981, respectively). Development and validation of algorithms such as ours are important initial steps in the development of software suites that could be adopted in routine pathological practices and potentially help reduce the burden on pathologists
The association and prognostic impact of enhancer of zeste homologue 2 expression and epithelial-mesenchymal transition in resected lung adenocarcinoma.
ObjectivesEpithelial-mesenchymal transition (EMT) and the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2) are important regulators of lung cancer progression and metastasis. Although recent studies support the correlation between EZH2 expression and EMT, no reports have investigated their association using immunohistochemistry or explored their prognostic impact on lung adenocarcinoma. The aim of this study was to elucidate the association between EZH2 and EMT, and their prognostic significance.MethodsEZH2 and the EMT markers E-cadherin and Vimentin were examined by IHC in lung adenocarcinoma specimens that were resected from 2003-2012. Associations between EZH2 and EMT markers and their correlations with survival were analyzed.ResultsWe enrolled 350 patients, approximately 70% of whom were diagnosed as pathological stage I. The rates of positive E-cadherin, Vimentin, and EZH2 expression were 60.3%, 21.4%, and 52.0%, respectively. There was a significant positive correlation between EZH2 and Vimentin expression (p = 0.008), and EZH2 scores were higher in the Mesenchymal group (p = 0.030). In multivariate analysis, EZH2 was an independent predictor of Vimentin expression, and vice versa. EMT and EZH2 overexpression were significantly correlated with poor disease-free and overall survival. Furthermore, the Epithelial group with high EZH2 expression had significantly worse disease-free and overall survival. Positive staining for EMT markers was unfavorable regarding disease-free survival among patients with low EZH2 expression.ConclusionsEMT and high EZH2 expression were associated with poor NSCLC prognoses. Vimentin is a key factor linking EMT and EZH2 in lung adenocarcinoma
Clinical implications of the novel cytokine IL-38 expressed in lung adenocarcinoma: Possible association with PD-L1 expression.
Interleukin (IL)-38, a novel member of the IL-1 cytokine family, is homologous to IL-1 receptor antagonist (IL-1Ra) and IL-36Ra, and has been reported to act as an antagonist. IL-38 expression is found in tonsil, placenta, and spleen, and recent studies suggest an association between IL-38 and autoimmune diseases. However, whether IL-38 plays a role in carcinogenesis or cancer growth is unclear. In the present study, we identified increases in IL-38 expression by immunohistochemistry in multiple types of cancer cells. In the examination of 417 surgically resected primary lung adenocarcinomas, Fisher's exact tests showed significant associations between high IL-38 expression and high tumor grades, an advanced T status, advanced N status, advanced stage, and the presence of pleural and vessel invasions. Survival analyses by the Kaplan-Meier method showed that patients with high expression of IL-38 had significantly shorter disease-free survival and shorter overall survival after surgery than patients with low expression of IL-38 (log-rank test: P = 0.0021 and P = 0.0035, respectively). Moreover, programmed cell death-ligand 1 (PD-L1)-positive cases showed higher expression of IL-38 than PD-L1-negative cases (Wilcoxon rank-sum test: P < 0.0001). In conclusion, IL-38 was expressed in tumor cells of various cancers, and IL-38 expression was associated with poor survival of lung adenocarcinoma patients. IL-38 may affect host immunity or the tumor microenvironment, and contribute to the progression of lung adenocarcinoma