476 research outputs found

    Modulating the T Lymphocyte Immune Response via Secretome Produced miRNA: From Tolerance Induction to the Enhancement of the Anticancer Response

    Get PDF
    T cells are key mediators of graft tolerance/rejection, development of autoimmunity, and the anticancer response. Consequently, differentially modifying the T cell response is a major therapeutic target. Most immunomodulatory approaches have focused on cytotoxic agents, cytokine modulation, monoclonal antibodies, mitogen activation, adoptive cell therapies (including CAR-T cells). However, these approaches do not persistently reorient the systemic immune response thus necessitating continual therapy. Previous murine studies from our laboratory demonstrated that the adoptive transfer of polymer-grafted (PEGylated) allogeneic leukocytes resulted in the induction of a persistent and systemic tolerogenic state. Further analyses demonstrated that miRNA isolated from the secretome of polymer-modified or control allogeneic responses effectively induced either a tolerogenic (TA1 miRNA) or proinflammatory (IA1 miRNA) response both in vitro and in vivo that was both systemic and persistent. In a murine Type 1 diabetes autoimmune model, the tolerogenic TA1 therapeutic effectively attenuated the disease process via the systemic upregulation of regulatory T cells while simultaneously downregulating T effector cells. In contrast, the proinflammatory IA1 therapeutic enhanced the anticancer efficacy of naïve PBMC by increasing inflammatory T cells and decreasing regulatory T cells. The successful development of this secretome miRNA approach may prove useful treating both autoimmune diseases and cancer

    Immunocamouflaged RBC for Alloimmunized Patients

    Get PDF
    While ABO/Rh(D) red blood cells (RBC)-matched transfusions are generally considered as safe, a significant risk of alloimmunization to non-A/B blood group antigens exists; especially in chronically transfused patients. Indeed, alloimmunization to non-A/B antigens can be so severe that RBC transfusion can no longer be safely administered without the risk of a potentially deadly immune haemolytic reaction. Currently, no satisfactory solutions exist either to prevent blood group alloimmunization or to cost-effectively treat patients with severe alloimmunization. To address this problem, we have pioneered the immunocamouflage of donor RBC. The immunocamouflaged (stealth) RBC is manufactured by the covalent grafting of biologically safe polymers to RBC membrane proteins. As a result of the grafted polymer, non-A/B blood group antigens are biophysically and immunologically masked. Of particular interest is the immunocamouflage of the Rh(D) antigen which could be used to improve blood inventory and transfusion safety. The polymer-modified RBCs are morphologically normal and, in mice, exhibit normal in vivo survival at immunoprotective grafting concentration. In this chapter, we explore both the biophysical and immunological consequences of the grafted polymers, explore the conditions in which they might be appropriately used, and describe the technology necessary to manufacture functional transfusable units of these cells within the clinical setting

    Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum

    Get PDF
    © 2014 Line, Alhede, Kolpen, Kuhl, Ciofu, Bjarnsholt, Moser, Toyofuku, Nomura, H0i'by and Jensen. Chronic Pseudomonas aeruginosa lung infection is the most severe complication in patients with cystic fibrosis (CF). The infection is characterised by the formation of biofilm surrounded by numerous polymorphonuclear leukocytes (PMNs) and strong O2 depletion in the endobronchial mucus. We have reported that O2 is mainly consumed by the activated PMNs, while O2 consumption by aerobic respiration is diminutive and nitrous oxide (N2O) is produced in infected CF sputum. This suggests that the reported growth rates ofP. aeruginosa in lungs and sputum may result from anaerobic respiration using denitrification. The growth rate of P. aeruginosa achieved by denitrification at physiological levels (~400 μM) of nitrate (NO3-) is however, not known. Therefore, we have measured growth rates of anoxic cultures of PAO1 and clinical isolates (n = 12) in LB media supplemented with NO3- and found a significant increase of growth when supplementing PAO1 and clinical isolates with > 150 μM NO3- and 100 μM NO3-, respectively. An essential contribution to growth by denitrification was demonstrated by the inability to establish a significantly increased growth rate by a denitrification deficient ΔnirS-N mutant at <1 mM of NO3-. Activation of denitrification could be achieved by supplementation with as little as 62.5 μM of NO3- according to the significant production of N2O by the nitrous oxide reductase deficient ΔnosZ mutant. Studies of the promoter activity, gene transcripts and enzyme activity of the four N-oxide reductases in PAO1 (Nar, Nir, Nor, Nos) further verified the engagement of denitrification, showing a transient increase in activation and expression and rapid consumption of NO3- followed by a transient increase of NO2-. Growth rates obtained by denitrification in this study were comparable to our reported growth rates in the majority of P. aeruginosa cells in CF lungs and sputum. Thus, we have demonstrated that denitrification is required for P. aeruginosa growth in infected endobronchial CF mucus

    Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments : results of nitrate and sulfate labeling experiments

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 163, doi:10.3389/fmicb.2016.00163.Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much 15N or 34S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200–500 nm in diameter and co-occurred with possible endobionts, were labeled with 15N originated from 15N-labeled nitrate under anoxia and were labeled with both 15N and 34S under dysoxia. The labeling with 15N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions.This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Young Scientists B No. 22740340 and Scientific Research C No. 24540504 to HN), an Invitation Fellowship for Research in Japan to JB by Japan Society for the Promotion of Science (JSPS), the Robert W. Morse Chair for Excellence in Oceanography at WHOI to JB, and The Investment in Science Fund at WHOI to JB

    Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    Full text link
    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs
    • …
    corecore