16 research outputs found

    Development of a real-time quantitative PCR assay for detection of a stable genomic region of BK virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BK virus infections can have clinically significant consequences in immunocompromised individuals. Detection and monitoring of active BK virus infections in certain situations is recommended and therefore PCR assays for detection of BK virus have been developed. The performance of current BK PCR detection assays is limited by the existence of viral polymorphisms, unknown at the time of assay development, resulting in inconsistent detection of BK virus. The objective of this study was to identify a stable region of the BK viral genome for detection by PCR that would be minimally affected by polymorphisms as more sequence data for BK virus becomes available.</p> <p>Results</p> <p>Employing a combination of techniques, including amino acid and DNA sequence alignment and interspecies analysis, a conserved, stable PCR target region of the BK viral genomic region was identified within the VP2 gene. A real-time quantitative PCR assay was then developed that is specific for BK virus, has an analytical sensitivity of 15 copies/reaction (450 copies/ml) and is highly reproducible (CV ≤ 5.0%).</p> <p>Conclusion</p> <p>Identifying stable PCR target regions when limited DNA sequence data is available may be possible by combining multiple analysis techniques to elucidate potential functional constraints on genomic regions. Applying this approach to the development of a real-time quantitative PCR assay for BK virus resulted in an accurate method with potential clinical applications and advantages over existing BK assays.</p

    Desensitization: Overcoming the Immunologic Barriers to Transplantation

    No full text
    HLA (Human Leucocyte Antigen) sensitization is a significant barrier to successful kidney transplantation. It often translates into difficult crossmatch before transplant and increased risk of acute and chronic antibody mediated rejection after transplant. Over the last decade, several immunomodulatory therapies have emerged allowing for increased access to kidney transplantation for the immunologically disadvantaged group of HLA sensitized end stage kidney disease patients. These include IgG inactivating agents, anti-cytokine antibodies, costimulatory molecule blockers, complement inhibitors, and agents targeting plasma cells. In this review, we discuss currently available agents for desensitization and provide a brief analysis of data on novel biologics, which will likely improve desensitization outcomes, and have potential implications in treatment of antibody mediated rejection

    Impact of Desensitization on Antiviral Immunity in HLA-Sensitized Kidney Transplant Recipients

    No full text
    Viral infections represent significant morbidity and mortality factors in kidney transplant recipients, with CMV, EBV, and BKV infections being most common. Desensitization (DES) with IVIg and rituximab with/without plasma exchange followed by kidney transplantation with alemtuzumab induction increased successful transplant rates in HLA-sensitized patients but may represent an increased risk for viral infections due to severe lymphocyte depletion. Here, we report on the posttransplant viral infection status in 372 DES versus 538 non-DES patients. CMV and EBV viremia were significantly lower in DES patients, while BKV viremia was similar. This trend was observed primarily in CMV sero(−), EBV sero(+), and sero(−) patients. No patient developed PTLD. The incidence of BKAN, allograft, and patient survival was similar in both groups. These viral infections were not associated with subsequent allograft rejection which occurred within 6 months after the infection. Conclusions. The IVIg + rituximab desensitization combined with alemtuzumab induction with triple immunosuppression maintenance does not increase the risk for CMV, EBV, and BKV infections. Possible factors include, in addition to posttransplant antiviral prophylaxis and PCR monitoring, presence of memory T cells and antibodies specific to CMV and likely EBV, NK cell-mediated ADCC despite lymphocyte depletion, elimination of EBV and CMV reservoirs by rituximab and alemtuzumab, and use of IVIg with antiviral properties
    corecore