26 research outputs found

    Towards manufactured red blood cells for the treatment of inherited anemia

    Get PDF
    Patients with inherited anemia and hemoglobinopathies (such as sickle cell disease and β-thalassemia) are treated with red blood cell (RBC) transfusions to alleviate their symptoms. Some of these patients may have rare blood group types or go on to develop alloimmune reactions, which can make it difficult to source compatible blood in the donor population. Laboratory-grown RBC represent a particularly attractive alternative which could satisfy an unmet clinical need. The challenge, however, is to produce - from a limited number of stem cells - the 2x1012 RBC required for a standard adult therapeutic dose. Encouraging progress has been made in RBC production from adult stem cells under good manufacturing practice. In 2011, the Douay group conducted a successful proof-of-principle mini-transfusion of autologous manufactured RBC in a single volunteer. In the UK, a trial is planned to assess whether manufactured RBC are equivalent to RBC produced naturally in donors, by testing an allogeneic mini-dose of laboratory-grown manufactured RBC in multiple volunteers. This review discusses recent progress in the erythroid culture field as well as opportunities for further scaling up of manufactured RBC production for transfusion practice

    A new junctional hierarchy

    Get PDF

    Polyurethane scaffolds seeded with CD34<sup>+</sup> cells maintain early stem cells whilst also facilitating prolonged egress of haematopoietic progenitors

    Get PDF
    We describe a 3D erythroid culture system that utilises a porous polyurethane (PU) scaffold to mimic the compartmentalisation found in the bone marrow. PU scaffolds seeded with peripheral blood CD34+ cells exhibit a remarkable reproducibility of egress, with an increased output when directly compared to human bone scaffolds over 28 days. Immunofluorescence demonstrated the persistence of CD34+ cells within the scaffolds for the entirety of the culture. To characterise scaffold outputs, we designed a flow cytometry panel that utilises surface marker expression observed in standard 2D erythroid and megakaryocyte cultures. This showed that the egress population is comprised of haematopoietic progenitor cells (CD36+GPA−/low). Control cultures conducted in parallel but in the absence of a scaffold were also generally maintained for the longevity of the culture albeit with a higher level of cell death. The harvested scaffold egress can also be expanded and differentiated to the reticulocyte stage. In summary, PU scaffolds can behave as a subtractive compartmentalised culture system retaining and allowing maintenance of the seeded “CD34+ cell” population despite this population decreasing in amount as the culture progresses, whilst also facilitating egress of increasingly differentiated cells

    Non-muscle Myosin II Drives Vesicle Loss During Human Reticulocyte Maturation

    Get PDF

    Quantitative proteomics of plasma vesicles identify novel biomarkers for Hemoglobin E/ β-Thalassemic patients

    Get PDF
    Key PointsChaperones, antioxidants, iron-sequestering proteins, and cathepsin S exhibited increased abundance in thalassemic EVs. Haptoglobin and hemopexin are reduced in thalassemic patients’ EVs, reflecting hemolysis. These could be used as clinical biomarkers.</jats:p
    corecore