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Introduction 

Haemolytic anaemias arise when red blood cell (RBC) integrity is compromised, eventually 

resulting in premature clearance or lysis and leading to anaemia when these effects cannot be 

sufficiently compensated by the capacity of the bone marrow to produce new cells.(Ucar 2002) 

Hereditary anaemia occurs as a consequence of genetic mutation(Risinger, et al 2019) (e.g. 

affecting membrane complex or cytoskeletal proteins, haemoglobin or metabolic enzymes), and 

diagnosing affected patients is a complex process since, given the wide variety of possible genetic 

causes, multiple examinations must be performed and an unambiguous result is usually reached 

only after DNA sequencing.(Kim, et al 2017) Furthermore, phenotypic severity can vary widely not 

just among individuals with different mutations but among individuals suffering from the same 

mutation, thereby complicating diagnosis.(Glogowska, et al 2017) 

 

While molecular diagnoses have become increasingly easier, cheaper and faster to perform in 

recent years, constraints on their use still exist,(Di Resta, et al 2018) and phenotype-based 

diagnostic methods still constitute an important proposition. Ektacytometry is a standard diagnostic 

platform for RBC disorders(Da Costa, et al 2016, Johnson and Ravindranath 1996) but only 

provides cell population-based data and requires a trained expert for data interpretation. Single 

cell rheoscopy can provide additional information, with higher complexity as a drawback; however, 

analysis of such data could potentially be facilitated by the use of machine learning (ML; 

automated, algorithm-based systems that generate data-driven predictions(Nichols, et al 2019)).  

 

We present here a preliminary framework for automated rheoscopy-based diagnosis of several 

types of hereditary haemolytic anaemia samples (Figure 1A) that requires low sample volumes 

and is efficient, rapid and expandable.



Methods 

Peripheral Blood Donor and Patient Samples 

Healthy control donor and diagnosed patient samples were collected according to procedures 

approved by research ethics committee and in accordance with the Declaration of Helsinki. 47 

blood samples were analysed at the University of Bristol following shipment from clinics in Milan 

or Utrecht (6 controls, 13 Hereditary Spherocytosis [HS] patients, 9 Congenital Dyserythropoietic 

Anaemia type II [CDAII] patients, 6 Pyruvate Kinase Deficiency [PKD] patients, 10 Hereditary 

Xerocytosis / Dehydrated Hereditary Stomatocytosis (DHS) 1 [HX] patients and 3 Gardos 

Xerocytosis / DHS2 [GX] patients). A further 26 samples were analysed at Sanquin (11 controls, 7 

HS patients and 8 Hereditary Elliptocytosis [HE] patients). 

 

Automated Rheoscope and Cell Analyzer 

1 µL of whole blood was diluted in 200 µL of a polyvinylpyrrolidone solution (viscosity 28.1 mPa·s). 

Samples were assessed in an Automated Rheoscope and Cell Analyzer (ARCA) according to 

published protocols.(Moura, et al 2018) At least 1000 cells per sample were analysed, providing 

deformability index (DI) and cross-sectional area (area) quantification. 

 

Computational analysis 

A Python script was developed for statistical analysis, data visualization and automatic dataset 

classification (Data availability). The full datasets used for training purposes were sampled and 

randomized into testing (500 cells) and training datasets (remainder). DI and area were normalized 

by the maximum measurable values (3.3/5.0 DI from Bristol and Sanquin, respectively, and 140 

μm2 area) and the training datasets were repeatedly subjected to random sampling to generate 

10,000 subsets of 500 cells each, followed by calculation of the average and standard deviation of 

the DI and area. Each sample category was then attributed unique identifiers. Classifiers were 

generated with the scikit-learn package(Pedregosa, et al 2011), trained with the generated subsets 

and tested with the initial testing subsets. Classification of unseen datasets was performed by 

selecting the mode of the machine-selected identifiers after 10,000 classifications.



Results and Discussion 

We have demonstrated in previous work that automated rheoscopy-based analyses can elucidate 

differences arising from reticulocyte maturation(Moura, et al 2018) as well as loss of cellular 

stability.(Moura, et al 2019) A particularly interesting observation from the same work was the fact 

that combining single-cell deformability index (DI) and cross-sectional area measurements 

provides a novel metric (Figure 1B) which to date has not been examined in the context of disease 

diagnosis. 

 

Therefore, we evaluated whole blood samples from diagnosed anaemic patients of varied 

aetiologies (HS, CDAII, PKD, HX and GX) against healthy donors using the proposed methodology 

(Figure 1C). Crucially, despite these diseases being frequently misdiagnosed due to overlapping 

clinical or morphological phenotypes,(Danise, et al 2001, Fermo, et al 2017) we observed them to 

display unique rheoscopy “fingerprints” upon visualization. 

 

Machine learning algorithms were next explored to automate the classification of ARCA data and 

thus facilitate the processing of larger numbers of samples,  A flow chart listing the procedure used 

for these attempts is displayed in Figure 2A.  

 

To provide sufficient information for training a ML classifier, the data was augmented through 

random sampling, vastly extending the number of new datasets with similar characteristics. We 

then tested the trained classifiers on a combination of fully unseen data and the testing sets 

generated before augmentation. A full summary of the prediction accuracies achieved (and listing 

the best performing classifiers) is provided in Figure 2B with the best performing algorithm 

correctly identifying sample datasets with 92% accuracy. (Figure 2C). We note that the GX 

samples were excluded due to the sample number being too low for classifier training. 

 

For further verification, the classifiers were retrained on additional samples (11 controls, 7 HS 

patients and 8 HE patients) obtained on a second ARCA device in an independent laboratory and 

using different acquisition settings. Again, we observed increasing classification accuracy until the 



use of 6 training datasets (at which point the classifier likely overfits these data), as per Figure 2D, 

achieving a final prediction accuracy for multiclass classification that is comparable to that offered 

by osmotic gradient ektacytometry when classifying HS samples alone.(Llaudet-Planas, et al 2018)

 

Importantly, the best-performing algorithms utilized here achieve complete differentiation between 

controls and diseased patients and accurately identify a variety of disorders potentially allow for 

the rapid preliminary identification or discrimination of more elusive diseases(Zaninoni, et al 2018) 

(such as CDAII and PKD) without time-consuming laboratory assays or molecular testing methods. 

Furthermore, the possibility to continuously incorporate data from new samples or the expansion 

with haematological conditions beyond those characterized in this study may ultimately allow for 

diagnosing a large number of samples in a relatively short period using minimal sample volumes. 

In conclusion, the method described in this work represents an exciting step forward towards 

facilitating the improved diagnosis of haemolytic anaemias.



 

 

Data availability 

All raw ARCA datasets obtained during this study, Python scripts generated for dataset analysis, 

classifier training and sample classification and the confusion matrices generated for classifier 

evaluation have been made publicly available through the following Github repository: 

https://github.com/pedrolmoura/ARCA-ML. 
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Figure legends  
 
Figure 1 – Different hereditary rare anaemias display distinct area and deformability profiles 
A) Design of the method for automatic sample classification. Whole blood is collected by the clinician, 
and a sample is obtained and processed using an Automated Rheoscope and Cell Analyzer (ARCA). 
Images acquired are subjected to computational analysis to determine cross-sectional area and 
deformability of at least 1000 individual cells, and the resulting datasets are then classified through 
trained computational models, achieving a diagnosis in less than 30 minutes.   
B) Contour plots of cross-sectional area plotted against the deformability index (as measured by dividing 
cell length by cell width), visualizing the probability distribution of erythrocytes (RBCs), cultured 
reticulocytes (reticulocytes) and erythrocytes treated with an anti-Glycophorin A antibody (BRIC256, 
International Blood Group Reference Laboratory) before analysis to induce membrane stiffening 
(BRIC256 RBCs). The control erythrocyte and cultured reticulocyte data shown in this panel were 
previously reported in Moura et al., 2018.(Moura, et al 2018) A minimum of 1000 cells were analysed 
per sample. All samples were analysed using the ARCA.   
C) Contour plots of cross-sectional area plotted against the deformability index (as measured by dividing 
cell length by cell width), visualizing the probability distribution of patient samples overlaid to allow for 
comparison with healthy controls. A minimum of 1000 cells were analysed per blood sample. All 
samples were analysed using the ARCA. The samples are listed from left to right: 
Top row: healthy controls (n = 6), Hereditary Spherocytosis patients (n = 13), Congenital 
Dyserythropoietic Anaemia II patients (n = 9).  
Bottom row: Pyruvate Kinase Deficiency patients (n = 6), Dehydrated Stomatocytosis type 1 or 
Hereditary Xerocytosis patients (n = 10), Dehydrated Stomatocytosis type 2 or Gardos Xerocytosis 
patients (n = 3).  
 
Figure 2 – Machine learning-based classification of automated rheoscopy datasets provides 
accurate diagnoses for unseen samples 
A) Flow diagram outlining the procedure for ARCA-based data visualization and automated sample 
classification. The sample is first analysed to produce a raw data table. These data are then reorganized 
into a Python pandas (“panel data”) data frame for ease of processing. If visualization is required, 
samples from a given sample type are equalized in cell number, joined and subjected to kernel density 
estimation to estimate the probability density functions of analysed features (e.g. cross-sectional area, 
deformability index, cell angle) and then visualized through contour plots or scatter plots. Data to be 
used for machine learning undergo feature extraction (removal of all non-essential information) and a 
subsection is sampled randomly (without reposition) for creation of a testing set. The remaining data 
then undergoes augmentation by generation of a series of randomly sampled datasets (with reposition, 
10,000x) which will be used for training a supervised machine learning algorithm. After training, a 
predictive model (i.e. classifier) is generated which first is tested with the previously generated testing 
set. Upon satisfactory results with the testing set, the classifier can then generate predictions for new 
unseen data. The final results consist of a sample label (or classification) and the certainty of that 
classification through repeated exposure to the same sample. 
B) Comparison of the overall prediction accuracy of multiple supervised machine learning algorithms in 
ARCA-based automated sample diagnosis as a function of the number of datasets per condition used 
for classifier training (from 0 datasets used, which should result in a random diagnosis, to a maximum 
of 6 datasets), comparing the samples analysed at the University of Bristol (except GX samples, which 
were too few to analyse). Prediction accuracy is coloured on a percentage scale from red (0%) to blue 
(100%). The best-performing algorithm per no. of datasets is bolded in the accuracy matrix. The graph 
displays the average prediction accuracy of all algorithms (blue). Error bars = ±SD. The prediction 
accuracies of the best-performing algorithms are plotted in green, while the prediction accuracies of the 
worst-performing algorithms are plotted in red. 
C) Prediction accuracy of the best performing algorithm in B). The samples used consist of healthy 
controls, congenital dyserythropoietic anaemia II patients (CDAII), hereditary spherocytosis patients 
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(HS), hereditary xerocytosis patients (HX) and pyruvate kinase deficiency patients (PKD). Rows identify 
real samples provided, whilst columns identify the algorithm’s prediction of the provided samples’ 
identity. The blue diagonal indicates samples that were correctly diagnosed (true positives). Red cells 
in the surrounding matrix indicate incorrect diagnoses (i.e. 2 HS samples were misdiagnosed as CDAII 
and 1 HX sample was misdiagnosed as HS). Accuracy is provided as a percentage of the true positives 
within the total number of samples and is coloured on a percentage scale from red (0%) to blue (100%). 
Average accuracy is provided as an average of the accuracies for all sample types. Data for all other 
algorithms and sample numbers tested is provided in Sup. Figures 1 to 7. 
D) Comparison of the overall prediction accuracy of multiple supervised machine learning algorithms in 
ARCA-based automated sample diagnosis as a function of the number of datasets used for training, 
comparing samples from healthy controls (Ctrl), hereditary spherocytosis patients (HS) and hereditary 
elliptocytosis patients (HE) analysed at Sanquin. The graph displays the average prediction accuracy 
of all algorithms (blue). Error bars = ±SD. The prediction accuracies of the best-performing algorithms 
are plotted in green, while the prediction accuracies of the worst-performing algorithms are plotted in 
red. 
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