25 research outputs found

    Depleted Energy Charge and Increased Pulmonary Endothelial Permeability Induced by Mitochondrial Complex I inhibition are Mitigated by Coenzyme Q\u3csub\u3e1\u3c/sub\u3e in the Isolated Perfused Rat Lung

    Get PDF
    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66±0.46 (SEM) to 2.34±0.15 µmol·g−1 dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36±1.64 to 38.62±3.14 µmol·15 min−1 perfusion·g−1 dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043±0.010 to 0.156±0.037 ml·min−1·cm H2O−1·g−1 dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency

    Physiological determinants of the pulmonary filtration coefficient

    No full text
    Current emphasis on translational application of genetic models of lung disease has renewed interest in the measurement of the gravimetric filtration coefficient (Kf) as a means to assess vascular permeability changes in isolated perfused lungs. The Kf is the product of the hydraulic conductivity and the filtration surface area, and is a sensitive measure of vascular fluid permeability when the pulmonary vessels are fully recruited and perfused. We have observed a remarkable consistency of the normalized baseline Kf values between species with widely varying body weights from mice to sheep. Uniformity of Kf values can be attributed to the thin alveolar capillary barrier required for gas exchange and the conserved matching of lung vascular surface area to the oxygen requirements of the body mass. An allometric correlation between the total lung filtration coefficient (Kf,t) and body weight in several species (r2 = 1.00) had a slope that was similar to those reported for alveolar and pulmonary capillary surface areas and pulmonary diffusion coefficients determined by morphometric methods in these species. A consistent Kf is dependent on accurately separating the filtration and vascular volume components of lung weight gain, then Kf is a consistent and repeatable index of lung vascular permeability

    Resistance to Store Depletion–induced Endothelial Injury in Rat Lung after Chronic Heart Failure

    No full text
    Rationale: In chronic heart failure, the lung endothelial permeability response to angiotensin II or thapsigargin-induced store depletion is ablated, although the mechanisms are not understood. Objectives: To determine whether the ablated permeability response to store depletion during heart failure was due to impaired expression of store operated Ca2+ channels in lung endothelium. Methods: Heart failure was induced by aortocaval fistula in rats. Permeability was measured in isolated lungs using the filtration coefficient and a low Ca2+/Ca2+ add-back strategy to identify the component of the permeability response dependent on Ca2+ entry. Main Results: In fistulas, right ventricular mass and left ventricular end diastolic pressure were increased and left ventricular shortening fraction decreased compared with shams. Thapsigargin-induced store depletion increased lung endothelial permeability in shams, but not in fistulas. Permeability increased in both groups after the Ca2+ ionophore A23187 or 14,15-epoxyeicosatrienoic acid, independent of store depletion. A diacylglycerol analog had no impact on permeability. Increased distance between the endoplasmic reticulum and the plasmalemmal membrane was ruled out as a mechanism for the loss of the permeability response to store depletion. Endothelial expression of the endoplasmic reticulum Ca2+ ATPase was not altered in fistulas compared with shams, whereas the store-operated canonical transient receptor potential channels 1, 3, and 4 were downregulated in extraalveolar vessel endothelium. Conclusions: We conclude that the adaptive mechanism limiting store depletion–induced endothelial lung injury in the aortocaval model of heart failure involves downregulation of store-operated Ca2+ channels

    Ca 2+

    No full text

    High Vascular Pressure–Induced Lung Injury Requires P450 Epoxygenase–Dependent Activation of TRPV4

    No full text
    High vascular pressure targets the lung septal network, causing acute lung injury. While calcium entry in septal endothelium has been implicated, the channel involved is not known. This study tested the hypothesis that the vanilloid transient receptor potential channel, TRPV4, is a critical participant in the permeability response to high vascular pressure. Isolated lungs from TRPV4+/+ or TRPV4−/− mice were studied at baseline or during high pressure challenge. Permeability was assessed via the filtration coefficient. Endothelial calcium transients were assessed using epifluorescence microscopy of the lung subpleural network. Light microscopy and point counting were used to determine the alveolar fluid volume fraction, a measure of alveolar flooding. Baseline permeability, calcium intensity, and alveolar flooding were no different in TRPV4+/+ versus TRPV4−/− lungs. In TRPV4+/+ lungs, the high pressure–induced permeability response was significantly attenuated by low calcium perfusate, the TRPV antagonist ruthenium red, the phospholipase A2 inhibitor methyl arachidonyl fluorophosphonate, or the P450 epoxygenase inhibitor propargyloxyphenyl hexanoic acid. Similarly, the high pressure–induced calcium transient in TRPV4+/+ lungs was attenuated with ruthenium red or the epoxygenase inhibitor. High vascular pressure increased the alveolar fluid volume fraction compared with control. In lungs from TRPV4−/− mice, permeability, calcium intensity, and alveolar fluid volume fraction were not increased. These data support a role for P450-derived epoxyeicosatrienoic acid–dependent regulation of calcium entry via TRPV4 in the permeability response to high vascular pressure
    corecore