100 research outputs found

    Quenching of spin operators in the calculation of radiative corrections for nuclear beta decay

    Get PDF
    Calculations of the axial-vector component to the radiative correction for superallowed Fermi 0+→0+0^+ \rightarrow 0^+ nuclear beta decay are here modified with quenched rather than free-nucleon coupling constants for the axial-vector and electromagnetic interactions with nucleons. The result increases the deduced value of VudV_{ud} but does not restore unitarity in the CKM matrix.Comment: LaTeX, 7 pages, no figures, TASCC-P-94-1

    REGULAR SUPPRESSION OF P,T-VIOLATING NUCLEAR MATRIX ELEMENTS

    Get PDF
    In heavy nuclei there is a parametrical suppression,   ∌A−1/3  \;\sim A^{-1/3}\;, of T-odd, P-odd matrix elements as compared to T-even, P-odd ones.Comment: 3 page

    Radiative corrections to low energy neutrino reactions

    Get PDF
    We show that the radiative corrections to charged current (CC) nuclear reactions with an electron(positron) in the final state are described by a universal function. The consistency of our treatment of the radiative corrections with the procedure used to extract the value of the axial coupling constant gAg_A is discussed. To illustrate we apply our results to (anti)neutrino deuterium disintegration and to pppp fusion in the sun. The limit of vanishing electron mass is considered, and a simple formula valid for E_{obs}\gsim 1 MeV is obtained. The size of the nuclear structure-dependent effects is also discussed. Finally, we consider CC transitions with an electron(positron) in the initial state and discuss some applications to electron capture reactions.Comment: 23 pages, 5 figure

    Measuring the ΜΌ\nu_{\mu} to ΜΌˉ\bar{\nu_{\mu}} Ratio in a High Statistics Atmospheric Neutrino Experiment

    Full text link
    By exploiting differences in muon lifetimes it is possible to distinguish ΜΌ\nu_{\mu} from ΜΌˉ\bar{\nu_{\mu}} charged current interactions in underground neutrino detectors. Such observations would be a useful tool in understanding the source of the atmospheric neutrino anomaly.Comment: 6 pages no figure

    Isospin-mixing corrections for fp-shell Fermi transitions

    Get PDF
    Isospin-mixing corrections for superallowed Fermi transitions in {\it fp}-shell nuclei are computed within the framework of the shell model. The study includes three nuclei that are part of the set of nine accurately measured transitions as well as five cases that are expected to be measured in the future at radioactive-beam facilities. We also include some new calculations for 10^{10}C. With the isospin-mixing corrections applied to the nine accurately measured ftft values, the conserved-vector-current hypothesis and the unitarity condition of the Cabbibo-Kobayashi-Maskawa (CKM) matrix are tested.Comment: 13 pages plus five tables. revtex macro

    On the Normalization of the Neutrino-Deuteron Cross Section

    Get PDF
    As is well-known, comparison of the solar neutrino fluxes measured in SuperKamiokande (SK) by Îœ+e−→Μ+e−\nu + e^- \to \nu + e^- and in the Sudbury Neutrino Observatory (SNO) by Îœe+d→e−+p+p\nu_e + d \to e^- + p + p can provide a ``smoking gun'' signature for neutrino oscillations as the solution to the solar neutrino puzzle. This occurs because SK has some sensitivity to all active neutrino flavors whereas SNO can isolate electron neutrinos. This comparison depends crucially on the normalization and uncertainty of the theoretical charged-current neutrino-deuteron cross section. We address a number of effects which are significant enough to change the interpretation of the SK--SNO comparison.Comment: 4 pages, 1 figure, submitted to PR

    Effective T-odd P-even hadronic interactions from quark models

    Full text link
    Tests of time reversal symmetry at low and medium energies may be analyzed in the framework of effective hadronic interactions. Here, we consider the quark structure of hadrons to make a connection to the more fundamental degrees of freedom. It turns out that for P-even T-odd interactions hadronic matrix elements evaluated in terms of quark models give rise to factors of 2 to 5. Also, it is possible to relate the strength of the anomalous part of the effective rho-type T-odd P-even tensor coupling to quark structure effects.Comment: 6 pages, 1 figure, RevTe

    Weak Transitions in A=6 and 7 Nuclei

    Get PDF
    The 6^6He beta decay and 7^7Be electron capture processes are studied using variational Monte Carlo wave functions, derived from a realistic Hamiltonian consisting of the Argonne v18v_{18} two-nucleon and Urbana-IX three-nucleon interactions. The model for the nuclear weak axial current includes one- and two-body operators with the strength of the leading two-body term--associated with Δ\Delta-isobar excitation of the nucleon--adjusted to reproduce the Gamow-Teller matrix element in tritium ÎČ\beta-decay. The measured half-life of 6^6. He is under-predicted by theory by ≃\simeq 8%, while that of 7^7Be for decay into the ground and first excited states of 7^7Li is over-predicted by ≃\simeq 9%. However, the experimentally known branching ratio for these latter processes is in good agreement with the calculated value. Two-body axial current contributions lead to a ≃\simeq 1.7% (4.4%) increase in the value of the Gamow-Teller matrix element of 6^6He (7^7Be), obtained with one-body currents only, and slightly worsen (appreciably improve) the agreement between the calculated and measured half-life. Corrections due to retardation effects associated with the finite lepton momentum transfers involved in the decays, as well as contributions of suppressed transitions induced by the weak vector charge and axial current operators, have also been calculated and found to be negligible.Comment: 23 pages 8 tables. submitted to Phys. Rev.

    Nuclear muon capture by 3He: meson exchange currents for the triton channel

    Get PDF
    Exchange current corrections are calculated using currents found from the hard-pion model and AV14+3BF wavefunctions. Results are given for the rate and spin observables. Their sensitivity to g_P, the nucleon pseudoscalar form factor, is reported.Comment: 35 pages, uuencoded gz-compressed tar file 42 Kbyte

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex
    • 

    corecore