7 research outputs found

    A Digital One Degree of Freedom Model of an Electromagnetic Position Sensor

    Get PDF
    The purpose of this project was to improve an existing system currently in use by NASA Langley Research Center (LaRC). The 6-inch Magnetic Suspension and Balance System (MSBS) built at MIT is operational with control in three degrees of freedom, with two additional degrees of freedom exhibiting passive stability. The means for measuring model displacement within the magnetic environment is an Electromagnetic Position Sensor (EPS), consisting of excitation coils at 20 kHz and multiple sets of pickup coils. The pickup coil voltages are proportional to model displacement in each degree of freedom. However, the EPS electronic signal processing system is analog and outdated; setup and adjustment are time consuming. The task was to construct a one degree of freedom model of the EPS including its electronics system in order to explore digital signal processing. The model core is allowed only axial displacement for simplicity; this model coil set is essentially a Linear Variable Differential Transformer (LVDT). The source signal was chosen to be 2.36 kHz for convenience, with scaling up to the full size system at 20 kHz possible. An amplification and filtering circuit board was constructed to modify the signal for the proper functionality of the model EPS. By comparing the reference or excitation coil signal and the measured or pickup coil signal by means of a digital phase measurement method using cross-correlation analysis, the digital algorithm resolves the phase shift between the two signals and their amplitude ratio. The key proof of concept is the digital signal processing algorithm; since the defining characteristics of any signal are the amplitude and phase this algorithm can be adapted to suit various control and setup needs of the MSBS and EPS. By proving that a digital interface with the EPS is possible, the analog interface can be replaced with a digital system

    The international at-sea intercomparison of fCO2 systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean

    No full text
    The ‘International Intercomparison Exercise of fCO2 Systems’ was carried out in 1996 during the R/V Meteor Cruise 36/1 from Bermuda/UK to Gran Canaria/Spain. Nine groups from six countries (Australia, Denmark, France, Germany, Japan, USA) participated in this exercise, bringing together 15 participants with seven underway fugacity of carbon dioxide (fCO2) systems, one discrete fCO2 system, and two underway pH systems, as well as systems for discrete measurement of total alkalinity and total dissolved inorganic carbon. Here, we compare surface seawater fCO2 measured synchronously by all participating instruments. A common infrastructure (seawater and calibration gas supply), different quality checks (performance of calibration procedures for CO2, temperature measurements) and a common procedure for calculation of final fCO2 were provided to reduce the largest possible amount of controllable sources of error. The results show that under such conditions underway measurements of the fCO2 in surface seawater and overlying air can be made to a high degree of agreement (±1 μatm) with a variety of possible equilibrator and system designs. Also, discrete fCO2 measurements can be made in good agreement (±3 μatm) with underway fCO2 data sets. However, even well-designed systems, which are operated without any obvious sign of malfunction, can show significant differences of the order of 10 μatm. Based on our results, no “best choice” for the type of the equilibrator nor specifics on its dimensions and flow rates of seawater and air can be made in regard to the achievable accuracy of the fCO2 system. Measurements of equilibrator temperature do not seem to be made with the required accuracy resulting in significant errors in fCO2 results. Calculation of fCO2 from high-quality total dissolved inorganic carbon (CT) and total alkalinity (AT) measurements does not yield results comparable in accuracy and precision to fCO2 measurements

    A review on the formation, causes, measurement, implications and reduction of neps during cotton processing

    No full text
    corecore