681 research outputs found

    Oxygen-stripes in La0.5Ca0.5MnO3 from ab initio calculations

    Full text link
    We investigate the electronic, magnetic and orbital properties of La0.5Ca0.5MnO3 perovskite by means of an ab initio electronic structure calculation within the Hartree-Fock approximation. Using the experimental crystal structure reported by Radaelli et al. [Phys. Rev B 55, 3015 (1997)], we find a charge-ordering stripe-like ground state. The periodicity of the stripes, and the insulating CE-type magnetic structure are in agreement with neutron x-ray and electron diffraction experiments. However, the detailed structure is more complex than that envisaged by simple models of charge and orbital order on Mn d-levels alone, and is better described as a charge-density wave of oxygen holes, coupled to the Mn spin/orbital order.Comment: 4 pages, 3 figures. Version accepted for publication in PR

    Investigation into the Ultrasound Setting of Glass Ionomer Cements. Part I. Postulated Modalities

    Get PDF
    Fuji IX glass is a low phosphate, low soda containing glass which has strontia incorporated as a radio-pacifier. This glass material was analyzed during exposure to different durations of ultrasound in an attempt to determine how the glass phase reacts. Cross sections of Fuji IX cement, set both conventionally and by ultrasound, were subsequently compared by microscopy. The resultant data were analyzed in detail

    Influence of Acid Washing on the Surface Morphology of Ionomer Glasses and Handling Properties of Glass Ionomer Cements

    Get PDF
    Acid washing is known to influence the handling properties of ionomer glasses used in glass ionomer cements due to the production of an ion depleted zone on the surface of the glass particles. The influence of acid washing on the particle size distribution and surface area of four glasses was examined by scanning electron microscopy (SEM), particle size analysis (PSA) and accelerated surface area porosimetry (ASAP) and the working and setting times of cements, produced from the glasses, correlated to changes in surface morphology. A linear relationship was found between the specific surface area of acid-washed SiO2-Al2O3-XF2-P2O5 glasses (X being either calcium or strontium) and their cement working and setting times. These changes directly correlated with increases in the mesopore volume. However, the influence of acid washing on the surface morphology was also found to be glass composition-dependant with the addition of sodium into the glass network resulting in no significant change in the surface area or mesopore volume despite changes in the working and setting time. Through examination of the influence of acid washing and glass composition on the specific surface area improvements in the control of the working and setting times of glass ionomer cements may be achieved. © 2007 Springer Science+Business Media, LLC

    Transition metal materials: a first principles approach to the electronic structure of the insulating phase

    No full text
    Recent progress in the application of first principles theory to the electronic structure of transition metal materials is reviewed with particular emphasis on the use of the exact exchange interaction. The success of this approach is exemplified by calculations on a range of materials: simple monoxides, chromium cyanides and perovskite structure copper fluorides. The reliability of computed properties is established for lattice structures, spin-couplings, spin-lattice interactions, orbital ordering effects and the changes in the ground state induced by hole doping.</p

    Investigation into the Ultrasonic Setting of Glass Ionomer Cements : Part II Setting Times and Compressive Strengths

    Get PDF
    The ultrasonic setting of glass ionomer cements (GIC) was discussed. It was observed that the ultrasonic setting resulted in improvements of compressive strength. An increase in the PAA molecular weight from PAA50 to PAA200 resulted in an increase in the strength, but with a further increase in the PAA molecular weight to PAA450, there was a reduction in the strength. Results show that the strength of the ultrasonically set materials after 1 day were close to the values for the 7 days chemically set samples

    Increasing the Quantity of Silver in Zinc-Based Glass Polyalkenoate Cement: is There an Improvement in Antibacterial Efficacy?

    Get PDF
    Bone cements should have the ability to chemically bond to both bone and surgical metals, exhibit no chemical or thermal necrosis, and have no significant shrinkage or exotherm upon setting. Taking these properties into consideration, glass polyalkenoate cements (GPCs) have potential as bone cements. GPCs are formed by the reaction between an ion-leachable glass and an aqueous solution of polyacrylic acid (PAA) [1] and have proven antibacterial and cariostatic properties [2], which are related to their ability to release beneficial amounts of ions over time [3, 4]. The GPCs can be formulated to release ions that can have a therapeutic benefit in a chosen application such as fluoride release in dental applications [5], which assists in the prevention of secondary caries [6]. Recently, GPCs have been formulated with zinc (Zn) replacing Al; a more biologically acceptable ion [7]. The authors have previously shown that GPCs based on a glass phase containing both Zn and silver (Ag) have the ability to release ions which are antibacterial against both Staphylococcus aureus (Oxford strain) [8] and Pseudomonas aeruginosa (a clinical isolate) [9, 10] in vitro and methicillin-resistant S. aureus (MRSA) both in vitro and in vivo [11]. The authors have also shown that their cements have the ability to inhibit proliferation of a biofilm of P. aeruginosa (PA01) [9]. The objective of the study reported herein is to build on the authors previous publications in order to determine if increases in Ag content of the glass phase of these cements will result in a concomitant increase in antibacterial efficacy of the resultant Ag-Zn GPCs formulated from them. © 2012 IEEE

    Preliminary Investigation of Novel Bone Graft Substitutes based on Strontium-Calcium-Zinc-Silicate Glasses

    Get PDF
    Bone graft procedures typically require surgeons to harvest bone from a second site on a given patient (Autograft) before repairing a bone defect. However, this results in increased surgical time, excessive blood loss and a significant increase in pain. In this context a synthetic bone graft with excellent histocompatibility, built in antibacterial efficacy and the ability to regenerate healthy tissue in place of diseased tissue would be a significant step forward relative to current state of the art philosophies. We developed a range of calcium-strontium-zinc-silicate glass-based bone grafts and characterized their structure and physical properties, then evaluated their in vitro cytotoxicity and in vivo biocompatibility using standardized models from the literature. A graft (designated BT109) of composition 0.28SrO/0.32ZnO/0.40 SiO2 (mol fraction) was the best performing formulation in vitro shown to induce extremely mild cytopathic effects (cell viability up to 95%) in comparison with the commercially available bone graft Novabone® (cell viability of up to 72%). Supplementary to this, the grafts were examined using the standard rat femur healing model on healthy Wister rats. All grafts were shown to be equally well tolerated in bone tissue and new bone was seen in close apposition to implanted particles with no evidence of an inflammatory response within bone. Complimentary to this BT109 was implanted into the femurs of ovariectomized rats to monitor the response of osteoporotic tissue to the bone grafts. The results from this experiment indicate that the novel grafts perform equally well in osteoporotic tissue as in healthy tissue, which is encouraging given that bone response to implants is usually diminished in ovariectomized rats. In conclusion these materials exhibit significant potential as synthetic bone grafts to warrant further investigation and optimisation. © 2008 Springer Science+Business Media, LLC

    Diamond and β\beta-tin structures of Si studied with quantum Monte Carlo calculations

    Full text link
    We have used diffusion quantum Monte Carlo (DMC) calculations to study the pressure-induced phase transition from the diamond to β\beta-tin structure in silicon. The calculations employ the pseudopotential technique and systematically improvable B-spline basis sets. We show that in order to achieve a precision of 1 GPa in the transition pressure the non-cancelling errors in the energies of the two structures must be reduced to 30 meV/atom. Extensive tests on system size errors, non-local pseudopotential errors, basis-set incompleteness errors, and other sources of error, performed on periodically repeated systems of up to 432 atoms, show that all these errors together can be reduced to well below 30 meV/atom. The calculated DMC transition pressure is about 3-4 GPa higher than the accepted experimental range of values, and we argue that the discrepancy may be due to the fixed-node error inherent in DMC techniques.Comment: 10 pages, 4 figure

    Jastrow correlation factor for atoms, molecules, and solids

    Get PDF
    A form of Jastrow factor is introduced for use in quantum Monte Carlo simulations of finite and periodic systems. Test data are presented for atoms, molecules, and solids, including both all-electron and pseudopotential atoms. We demonstrate that our Jastrow factor is able to retrieve a large fraction of the correlation energy
    • …
    corecore