1,630 research outputs found
Application of the Feshbach-resonance management to a tightly confined Bose-Einstein condensate
We study suppression of the collapse and stabilization of matter-wave
solitons by means of time-periodic modulation of the effective nonlinearity,
using the nonpolynomial Schroedinger equation (NPSE) for BEC trapped in a tight
cigar-shaped potential. By means of systematic simulations, a stability region
is identified in the plane of the modulation amplitude and frequency. In the
low-frequency regime, solitons feature chaotic evolution, although they remain
robust objects.Comment: Physical Review A, in pres
Truncation of TRIM5 in the <i>Feliformia</i> explains the absence of retroviral restriction in cells of the domestic cat
TRIM5[alpha] mediates a potent retroviral restriction phenotype in diverse mammalian species. Here, we identify a TRIM5 transcript in cat cells with a truncated B30.2 capsid binding domain and ablated restrictive function which, remarkably, is conserved across the <i>Feliformia</i>. Cat TRIM5 displayed no restriction activity, but ectopic expression conferred a dominant negative effect against human TRIM5[alpha]. Our findings explain the absence of retroviral restriction in cat cells and suggest that disruption of the TRIM5 locus has arisen independently at least twice in the <i>Carnivora</i>, with implications concerning the evolution of the host and pathogen in this taxon
Novel methods for spatial prediction of soil functions within landscapes (SP0531)
Previous studies showed that soil patterns could be predicted in agriculturally managed landscapes by modelling and extrapolating from extensive existing but related integrated datasets. Based on these results we proposed to develop and apply predictive models of the relationships between environmental data and known soil patterns to predict capacity for key soil functions within diverse
landscapes for which there is little detailed underpinning soil information available.
Objectives were:
To develop a high-level framework in which the non-specialist user-community could explore questions.
To generate digital soil maps for three selected catchments at a target resolution of 1:50000 to provide the base information for soil function prediction.
To use a modelling approach to predict the performance of key soil functions in catchments undergoing change but where only sparse or low resolution soil survey data are available.
To use a modelling approach to assess the impact of different management scenarios and/or environmental conditions on the delivery of multiple soil functions within a catchment.
To create a detailed outline of the requirements for ground-truthing to test the predicted model outputs at a catchment scale.
To contribute to the development of a high-level framework for decision makers
Recommended from our members
Mass spectrometry imaging of glucosinolates in arabidopsis flowers and siliques
Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl
(glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation
A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field
Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 x 1.2 x 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields
Multidimensional solitons in periodic potentials
The existence of stable solitons in two- and three-dimensional (2D and 3D)
media governed by the self-focusing cubic nonlinear Schr\"{o}dinger equation
with a periodic potential is demonstrated by means of the variational
approximation (VA) and in direct simulations. The potential stabilizes the
solitons against collapse. Direct physical realizations are a Bose-Einstein
condensate (BEC) trapped in an optical lattice, and a light beam in a bulk Kerr
medium of a photonic-crystal type. In the 2D case, the creation of the soliton
in a weak lattice potential is possible if the norm of the field (number of
atoms in BEC, or optical power in the Kerr medium) exceeds a threshold value
(which is smaller than the critical norm leading to collapse). Both
"single-cell" and "multi-cell" solitons are found, which occupy, respectively,
one or several cells of the periodic potential, depending on the soliton's
norm. Solitons of the former type and their stability are well predicted by VA.
Stable 2D vortex solitons are found too.Comment: 13 pages, 3 figures, Europhys. Lett., in pres
Vortex stability in nearly two-dimensional Bose-Einstein condensates with attraction
We perform accurate investigation of stability of localized vortices in an
effectively two-dimensional ("pancake-shaped") trapped BEC with negative
scattering length. The analysis combines computation of the stability
eigenvalues and direct simulations. The states with vorticity S=1 are stable in
a third of their existence region, , where is
the number of atoms, and is the corresponding collapse
threshold. Stable vortices easily self-trap from arbitrary initial
configurations with embedded vorticity. In an adjacent interval, , the unstable vortex
periodically splits in two fragments and recombines. At , the fragments do not recombine, as each one collapses by
itself. The results are compared with those in the full 3D Gross-Pitaevskii
equation. In a moderately anisotropic 3D configuration, with the aspect ratio
, the stability interval of the S=1 vortices occupies
of their existence region, hence the 2D limit provides for a reasonable
approximation in this case. For the isotropic 3D configuration, the stability
interval expands to 65% of the existence domain. Overall, the vorticity
heightens the actual collapse threshold by a factor of up to 2. All vortices
with are unstable.Comment: 21 pages, 8 figures, to appear in Physical Review
Nonlinearity Management in Higher Dimensions
In the present short communication, we revisit nonlinearity management of the
time-periodic nonlinear Schrodinger equation and the related averaging
procedure. We prove that the averaged nonlinear Schrodinger equation does not
support the blow-up of solutions in higher dimensions, independently of the
strength in the nonlinearity coefficient variance. This conclusion agrees with
earlier works in the case of strong nonlinearity management but contradicts
those in the case of weak nonlinearity management. The apparent discrepancy is
explained by the divergence of the averaging procedure in the limit of weak
nonlinearity management.Comment: 9 pages, 1 figure
- …