1,630 research outputs found

    Application of the Feshbach-resonance management to a tightly confined Bose-Einstein condensate

    Full text link
    We study suppression of the collapse and stabilization of matter-wave solitons by means of time-periodic modulation of the effective nonlinearity, using the nonpolynomial Schroedinger equation (NPSE) for BEC trapped in a tight cigar-shaped potential. By means of systematic simulations, a stability region is identified in the plane of the modulation amplitude and frequency. In the low-frequency regime, solitons feature chaotic evolution, although they remain robust objects.Comment: Physical Review A, in pres

    Truncation of TRIM5 in the <i>Feliformia</i> explains the absence of retroviral restriction in cells of the domestic cat

    Get PDF
    TRIM5[alpha] mediates a potent retroviral restriction phenotype in diverse mammalian species. Here, we identify a TRIM5 transcript in cat cells with a truncated B30.2 capsid binding domain and ablated restrictive function which, remarkably, is conserved across the &lt;i&gt;Feliformia&lt;/i&gt;. Cat TRIM5 displayed no restriction activity, but ectopic expression conferred a dominant negative effect against human TRIM5[alpha]. Our findings explain the absence of retroviral restriction in cat cells and suggest that disruption of the TRIM5 locus has arisen independently at least twice in the &lt;i&gt;Carnivora&lt;/i&gt;, with implications concerning the evolution of the host and pathogen in this taxon

    Novel methods for spatial prediction of soil functions within landscapes (SP0531)

    Get PDF
    Previous studies showed that soil patterns could be predicted in agriculturally managed landscapes by modelling and extrapolating from extensive existing but related integrated datasets. Based on these results we proposed to develop and apply predictive models of the relationships between environmental data and known soil patterns to predict capacity for key soil functions within diverse landscapes for which there is little detailed underpinning soil information available. Objectives were: To develop a high-level framework in which the non-specialist user-community could explore questions. To generate digital soil maps for three selected catchments at a target resolution of 1:50000 to provide the base information for soil function prediction. To use a modelling approach to predict the performance of key soil functions in catchments undergoing change but where only sparse or low resolution soil survey data are available. To use a modelling approach to assess the impact of different management scenarios and/or environmental conditions on the delivery of multiple soil functions within a catchment. To create a detailed outline of the requirements for ground-truthing to test the predicted model outputs at a catchment scale. To contribute to the development of a high-level framework for decision makers

    A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field

    Get PDF
    Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 x 1.2 x 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields

    Multidimensional solitons in periodic potentials

    Full text link
    The existence of stable solitons in two- and three-dimensional (2D and 3D) media governed by the self-focusing cubic nonlinear Schr\"{o}dinger equation with a periodic potential is demonstrated by means of the variational approximation (VA) and in direct simulations. The potential stabilizes the solitons against collapse. Direct physical realizations are a Bose-Einstein condensate (BEC) trapped in an optical lattice, and a light beam in a bulk Kerr medium of a photonic-crystal type. In the 2D case, the creation of the soliton in a weak lattice potential is possible if the norm of the field (number of atoms in BEC, or optical power in the Kerr medium) exceeds a threshold value (which is smaller than the critical norm leading to collapse). Both "single-cell" and "multi-cell" solitons are found, which occupy, respectively, one or several cells of the periodic potential, depending on the soliton's norm. Solitons of the former type and their stability are well predicted by VA. Stable 2D vortex solitons are found too.Comment: 13 pages, 3 figures, Europhys. Lett., in pres

    Vortex stability in nearly two-dimensional Bose-Einstein condensates with attraction

    Full text link
    We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ("pancake-shaped") trapped BEC with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S=1 are stable in a third of their existence region, 0<N<(1/3)Nmax(S=1)0<N<(1/3)N_{\max}^{(S=1)}, where NN is the number of atoms, and Nmax(S=1)N_{\max}^{(S=1)} is the corresponding collapse threshold. Stable vortices easily self-trap from arbitrary initial configurations with embedded vorticity. In an adjacent interval, (1/3)Nmax(S=1)<N<(1/3)N_{\max }^{(S=1)}<N< 0.43Nmax(S=1)\allowbreak 0.43N_{\max}^{(S=1)}, the unstable vortex periodically splits in two fragments and recombines. At N>N> 0.43Nmax(S=1)\allowbreak 0.43N_{\max}^{(S=1)}, the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full 3D Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio 10\sqrt{10}, the stability interval of the S=1 vortices occupies 40\approx 40% of their existence region, hence the 2D limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S2S\geq 2 are unstable.Comment: 21 pages, 8 figures, to appear in Physical Review

    Nonlinearity Management in Higher Dimensions

    Full text link
    In the present short communication, we revisit nonlinearity management of the time-periodic nonlinear Schrodinger equation and the related averaging procedure. We prove that the averaged nonlinear Schrodinger equation does not support the blow-up of solutions in higher dimensions, independently of the strength in the nonlinearity coefficient variance. This conclusion agrees with earlier works in the case of strong nonlinearity management but contradicts those in the case of weak nonlinearity management. The apparent discrepancy is explained by the divergence of the averaging procedure in the limit of weak nonlinearity management.Comment: 9 pages, 1 figure
    corecore