27 research outputs found

    The position of graptolites within Lower Palaeozoic planktic ecosystems.

    Get PDF
    An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms

    SIMPLE AEROBIC FORMATION OF A (FE4S4)2+ CLUSTER CENTER

    No full text
    Müller A, SCHLADERBECK NH. SIMPLE AEROBIC FORMATION OF A (FE4S4)2+ CLUSTER CENTER. NATURWISSENSCHAFTEN. 1986;73(11):669-670

    Availability of O2 and H2O2 on Pre-Photosynthetic Earth

    No full text
    Old arguments that free O2 must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05 nM, which corresponds to a partial pressure for O2 of about 4 × 10−8 bar. We used numerical models to study whether such O2 concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H2O2 near the surface might have yielded enough O2 to satisfy this constraint. Alternatively, poleward transport of O2 from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O2 directly to the surface. Thus, our calculations indicate that this “early respiration” hypothesis might be physically reasonable. Key Words: Early Earth—Oxygen—Respiration—Tracer transport—General circulation. Astrobiology 11, 293–302

    Extraction, analysis and interpretation of intracrystalline amino acids from fossils

    No full text
    A new protocol for the extraction and analysis of intracrystalline macromolecules has been developed that allows the rapid determination of the amino-acid composition of fossils. The technique utilizes decalcification with 2 M HCI, characterization of the soluble fraction of the biomolecules by automated amino-acid analysis, and differentiation using multivariate statistics. Compared to other methods, this technique allows sampling of indigenous degraded proteins in addition to the preserved remains of peptides, leading to the recovery of data from more reliable indigenous sources. Although the extraction method is demonstrated using fossil samples to demonstrate gross phylogenetic differences, there is much potential to use these biomolecules for a wide range of application
    corecore