284 research outputs found

    Oral esketamine for treatment-resistant depression:rationale and design of a randomized controlled trial

    Get PDF
    BACKGROUND: There is an urgent need to develop additional treatment strategies for patients with treatment-resistant depression (TRD). The rapid but short-lived antidepressant effects of intravenous (IV) ketamine as a racemic mixture have been shown repeatedly in this population, but there is still a paucity of data on the efficacy and safety of (a) different routes of administration, and (b) ketamine's enantiomers esketamine and arketamine. Given practical advantages of oral over IV administration and pharmacodynamic arguments for better antidepressant efficacy of esketamine over arketamine, we designed a study to investigate repeated administration of oral esketamine in patients with TRD. METHODS: This study features a triple-blind randomized placebo-controlled trial (RCT) comparing daily oral esketamine versus placebo as add-on to regular antidepressant medications for a period of 6 weeks, succeeded by a follow-up of 4 weeks. The methods support examination of the efficacy, safety, tolerability, mechanisms of action, and economic impact of oral esketamine in patients with TRD. DISCUSSION: This is the first RCT investigating repeated oral esketamine administration in patients with TRD. If shown to be effective and tolerated, oral esketamine administration poses important advantages over IV administration. TRIAL REGISTRATION: Dutch Trial Register, NTR6161. Registered 21 October 2016

    Optimization of Fluconazole Dosing for the Prevention and Treatment of Invasive Candidiasis Based on the Pharmacokinetics of Fluconazole in Critically Ill Patients

    Get PDF
    The efficacy of fluconazole is related to the area under the plasma concentration-time curve (AUC) over the MIC of the microorganism. Physiological changes in critically ill patients may affect the exposure of fluconazole, and therefore dosing adjustments might be needed. The aim of this study was to evaluate variability in fluconazole drug concentration in intensive care unit (ICU) patients and to develop a pharmacokinetic model to support personalized fluconazole dosing. A prospective observational pharmacokinetic study was performed in critically ill patients receiving fluconazole either as prophylaxis or as treatment. The association between fluconazole exposure and patient variables was studied. Pharmacokinetic modeling was performed with a nonparametric adaptive grid (NPAG) algorithm using R package Pmetrics. Data from 33 patients were available for pharmacokinetic analysis. Patients on dialysis and solid organ transplant patients had a significantly lower exposure to fluconazole. The population was best described with a one-compartment model, where the mean volume of distribution was 51.52 liters (standard deviation [SD], 19.81) and the mean clearance was 0.767 liters/h (SD, 0.46). Creatinine clearance was tested as a potential covariate in the model, but was not included in the final population model. A significant positive correlation was found between the fluconazole exposure (AUC) and the trough concentration (C-min). Substantial variability in fluconazole plasma concentrations in critically ill adults was observed, where the majority of patients were underexposed. Fluconazole C-min therapeutic drug monitoring (TDM)-guided dosing can be used to optimize therapy in critically ill patients

    Reply to Van Daele et al., "Fluconazole Underexposure in Critically Ill Patients:a Matter of Using the Right Targets?"

    Get PDF
    We thank Van Daele et al (1) for their interest in our study investigating the pharmacokinetics in critically ill patients with aim to optimize fluconazole dosing for the prevention and treatment of invasive candida infections (2).…

    Extending the viability of human precision-cut intestinal slice model for drug metabolism studies

    Get PDF
    Human Precision-cut intestinal slices (hPCIS) are used to study intestinal physiology, pathophysiology, drug efficacy, toxicology, kinetics, and metabolism. However, the use of this ex vivo model is restricted to approximately a 24 h timeframe because of declining viability of the hPCIS during traditional culture. We hypothesized that we could extend the hPCIS viability by using organoid medium. Therefore, we cultured hPCIS for up to 72 h in organoid media [expansion medium (Emed) and differentiation medium (Dmed)]. After incubation, we assessed culture-induced changes on viability markers, specific cell type markers and we assessed the metabolic activity of enterocytes by measuring midazolam metabolite formation. We show that the adenosine triphosphate (ATP)/protein ratio of Emed-cultured hPCIS and morphology of both Emed- and Dmed-cultured hPCIS was improved compared to WME-cultured hPCIS. Emed-cultured hPCIS showed an increased expression of proliferation and stem cell markers, whereas Dmed-cultured hPCIS showed an increased expression of proliferation and enterocyte markers, along with increased midazolam metabolism. Using the Emed, the viability of hPCIS could be extended for up to 72 h, and proliferating stem cells remained preserved. Using Dmed, hPCS also remained viable for up to 72 h, and specifically rescued the metabolizing enterocytes during culture. In conclusion, by using two different organoid culture media, we could extend the hPCIS viability for up to 72 h of incubation and specifically steer stem cells or enterocytes towards their original function, metabolism, and proliferation, potentially allowing pharmacokinetic and toxicology studies beyond the 24 h timeframe

    R-h-erythropoietin counteracts the inhibition of in vitro erythropoiesis by tumour necrosis factor alpha in patients with rheumatoid arthritis

    Get PDF
    Anaemia of chronic disease (ACD) is a common extra-articular manifestation of rheumatoid arthritis (RA). Tumour necrosis factor alpha (TNFα) plays an important role in the development of ACD. The objective of the present study was to assess inhibition of in vitro colony-forming unit erythrocyte (CFUe) and blast-forming unit erythrocyte (BFUe) growth by TNFα and to examine whether this suppression could be counteracted by adding increasing concentrations of recombinant human erythropoietin (EPO) (r-h-EPO) to bone marrow cultures of RA patients with ACD and without anaemia (controls). Bone marrow cells of RA patients with ACD and control patients were cultured. The cultures were incubated with increasing concentrations of r-h-EPO (0.25; 0.5; 1; 2 U/ml), each in combination with increasing quantities of TFNα (0; 50; 100; 200; 400 U/ml). CFUe and BFUe were assessed after 7 and 14 days, respectively. Dose-dependent inhibition of BFUe and CFUc by increasing concentrations of TNFα was observed in ACD and controls. Regarding CFUe (ACD patients) incubated with 0.25 U/ml EPO, 50 U/ml TNFα caused 28% suppression compared to cultures without TNFα. Increasing the concentration of r-h-EPO from 0.25 U/ml to 2 U/ml completely restored the number of CFUe. A similar pattern was observed in BFUe growth in both groups. These data demonstrated the suppressive effects of TNFα on erythropoiesis in vitro and that the suppresed erythropoiesis could be partly corrected by the addition of excess r-h-EPO to the cultures. No significant differences were observed between ACD and control RA patients. This in vitro model may help explain the clinical response to r-h-EPO therapy as documented in RA patients with ACD

    Transcriptional Reprogramming of CD11b+Esamhi Dendritic Cell Identity and Function by Loss of Runx3

    Get PDF
    Classical dendritic cells (cDC) are specialized antigen-presenting cells mediating immunity and tolerance. cDC cell-lineage decisions are largely controlled by transcriptional factor regulatory cascades. Using an in vivo cell-specific targeting of Runx3 at various stages of DC lineage development we show that Runx3 is required for cell-identity, homeostasis and function of splenic Esamhi DC. Ablation of Runx3 in DC progenitors led to a substantial decrease in splenic CD4+/CD11b+ DC. Combined chromatin immunoprecipitation sequencing and gene expression analysis of purified DC-subsets revealed that Runx3 is a key gene expression regulator that facilitates specification and homeostasis of CD11b+Esamhi DC. Mechanistically, loss of Runx3 alters Esamhi DC gene expression to a signature characteristic of WT Esamlow DC. This transcriptional reprogramming caused a cellular change that diminished phagocytosis and hampered Runx3-/- Esamhi DC capacity to prime CD4+ T cells, attesting to the significant role of Runx3 in specifying Esamhi DC identity and function
    • …
    corecore